# GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

# Mark scheme

June 2023

Version: 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

#### Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

#### **Glossary for Mark Schemes**

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

| М               | Method marks are awarded for a correct method which could lead to a correct answer.                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Α               | Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied. |
| В               | Marks awarded independent of method.                                                                                                   |
| ft              | Follow through marks. Marks awarded for correct working following a mistake in an earlier step.                                        |
| SC              | Special case. Marks awarded for a common misinterpretation which has some mathematical worth.                                          |
| М dep           | A method mark dependent on a previous method mark being awarded.                                                                       |
| B dep           | A mark that can only be awarded if a previous independent mark has been awarded.                                                       |
| oe              | Or equivalent. Accept answers that are equivalent.                                                                                     |
|                 | eg accept 0.5 as well as $\frac{1}{2}$                                                                                                 |
| [a, b]          | Accept values between a and b inclusive.                                                                                               |
| [a, b)          | Accept values a ≼ value < b                                                                                                            |
| 3.14            | Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416                                                                                 |
| Use of brackets | It is not necessary to see the bracketed work to award the marks.                                                                      |

Examiners should consistently apply the following principles.

#### Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

#### Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

#### Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

#### Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

#### Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

#### Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

#### Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

#### Work not replaced

Erased or crossed out work that is still legible should be marked.

#### Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

#### Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

#### **Continental notation**

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| Q | Answer                                           | Mark | Comments                                                      |               |  |
|---|--------------------------------------------------|------|---------------------------------------------------------------|---------------|--|
|   | $\frac{30}{12}$ or 2.5                           | B1   | oe fraction, mixed numb<br>eg $\frac{5}{2}$ or $2\frac{1}{2}$ | er or decimal |  |
| 1 | Additional Guidance                              |      |                                                               |               |  |
|   | Ignore simplification or conversion at           |      |                                                               |               |  |
|   | eg $\frac{30}{12}$ in working with 2.6 on answer |      | B1                                                            |               |  |
|   | 30 ÷ 12 with no further correct work             | B0   |                                                               |               |  |

| Q | Answer              | Mark | Comments |  |  |  |
|---|---------------------|------|----------|--|--|--|
|   | 28                  | B1   |          |  |  |  |
| 2 | Additional Guidance |      |          |  |  |  |
|   |                     |      |          |  |  |  |

| Q | Answer                                                    | Mark       | Comments                                               |    |  |
|---|-----------------------------------------------------------|------------|--------------------------------------------------------|----|--|
|   | $\frac{7}{4}$ or 1.75                                     | B1         | oe fraction, mixed number or decimal eg $1\frac{3}{4}$ |    |  |
|   | Ad                                                        | ditional G | Buidance                                               |    |  |
|   | Ignore conversion attempt after corre                     | ct answer  | seen                                                   |    |  |
|   | eg $\frac{7}{4} = 1.8$                                    | B1         |                                                        |    |  |
| 3 | Condone answer $\frac{1}{\frac{4}{7}}$                    | B1         |                                                        |    |  |
|   | Condone answer $\left(\frac{4}{7}\right)^{-1}$ (without b | orackets E | 30)                                                    | B1 |  |
|   | Do not allow $1 \div \frac{4}{7}$                         | BO         |                                                        |    |  |
|   | $\frac{-7}{-4}$                                           |            |                                                        | B1 |  |

| Q | Answer                                                                                                                | Mark | Comments                                              |    |  |
|---|-----------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------|----|--|
|   | 112.5% or 1.125 or $\frac{9}{8}$<br>or<br>19.53 ÷ 112.5 (× 100)<br>or 0.1736 (× 100)                                  | M1   | oe eg 1 + 0.125<br>or<br>11 19.53 ÷ 9 × 8 or 2.17 × 8 |    |  |
|   | 17.36                                                                                                                 | A1   |                                                       |    |  |
|   | Additional Guidance                                                                                                   |      |                                                       |    |  |
| 4 | M1 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |      |                                                       |    |  |
|   | M1 may be seen in a trial (the answer to the trial can be ignored)                                                    |      |                                                       |    |  |
|   | eg 15 × 1.125                                                                                                         |      |                                                       | M1 |  |
|   | 19.53 × 1.125                                                                                                         |      |                                                       | M1 |  |
|   | Do not allow misreads for 12.5%                                                                                       |      |                                                       |    |  |
|   | eg1 19.53 ÷ 1.0125                                                                                                    |      |                                                       |    |  |
|   | eg2 19.53 ÷ 112                                                                                                       |      |                                                       |    |  |
|   | 112.5 not recovered                                                                                                   |      |                                                       |    |  |

| Q | Ans                                                                                                                         | wer    |       | Mark  |                                                                                                      | Comments |    |
|---|-----------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|------------------------------------------------------------------------------------------------------|----------|----|
|   | 45 × 8 or 360                                                                                                               |        |       | M1    | oe<br>number<br>may be                                                                               |          |    |
|   | 45 × 8 × 2<br>or 360 × 2<br>or 720 or 7.2(0)                                                                                |        |       | M1dep | oe<br>value of<br>implied l                                                                          |          |    |
|   | 17.7(0) – their 7.2(0) – 45 × 0.1(0)<br>or<br>1770 – their 720 – 45 × 10<br>or<br>6(.00) or 600                             |        |       | M1dep | oe<br>value of 5p coins<br>implied by 7.2 : 6 oe ratio not in simples<br>form<br>or 6 : 7.2 oe ratio |          |    |
|   | 6:5                                                                                                                         |        |       | A1    | accept 1.2 : 1 or $\frac{6}{5}$ : 1 or $1\frac{1}{5}$ : 1<br>or 1 : 0.83() or 1 : $\frac{5}{6}$      |          |    |
| 5 | Additional Guidance                                                                                                         |        |       |       |                                                                                                      |          |    |
|   | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |        |       |       |                                                                                                      |          |    |
|   | Allow working in p                                                                                                          |        |       |       |                                                                                                      |          |    |
|   | Must work consistently in pence or pounds for the third mark (or recover)                                                   |        |       |       |                                                                                                      |          |    |
|   | Ignore units in the                                                                                                         |        | M3A1  |       |                                                                                                      |          |    |
|   | 720 may be seen in a ratio with the value of the 10p coins<br>eg 720 : 450 or 7.2 : 4.5                                     |        |       |       |                                                                                                      |          | M2 |
|   | 600 may be seen in a ratio with the value of the 10p coins<br>eg 600 : 450 or 6 : 4.5                                       |        |       |       |                                                                                                      |          | МЗ |
|   | For information:                                                                                                            | Coin   | 10p   | 2р    | 5р                                                                                                   |          |    |
|   |                                                                                                                             | Number | 45    | 360   | 120                                                                                                  |          |    |
|   |                                                                                                                             | Value  | £4.50 | £7.20 | £6.00                                                                                                |          |    |

| Q    | Answer                                                                                                                   | Mark | Comments                                                                         |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------|--|--|--|
|      | 360 ÷ 8<br>or<br>135 seen                                                                                                | M1   | oe eg 45 × 8 = 360<br>or 180 - $\frac{(8-2) \times 180}{8}$<br>may be on diagram |  |  |  |
| 6(a) | 45                                                                                                                       | A1   |                                                                                  |  |  |  |
|      | Additional Guidance                                                                                                      |      |                                                                                  |  |  |  |
|      | M1 may be awarded for correct work with no answer or incorrect answer,<br>even if this is seen amongst multiple attempts |      |                                                                                  |  |  |  |
|      | 45 seen but not chosen as answer, e                                                                                      | M1A0 |                                                                                  |  |  |  |

| Q    | Answer                                 | Mark | Comments |
|------|----------------------------------------|------|----------|
| 6(b) | It is less than the answer to part (a) | B1   |          |

| Q    | Answer             |                     |   |   | Mark |    |            | Commen    | ts |    |
|------|--------------------|---------------------|---|---|------|----|------------|-----------|----|----|
|      | All values correct |                     |   |   | B2   | B1 | 1 or 2 row | s correct |    |    |
|      |                    | Additional Guidance |   |   |      |    |            |           |    |    |
| 7(-) |                    | 1                   | 2 | 3 |      | 4  | 5          | 6         |    |    |
| 7(a) | <b>2</b> <i>x</i>  | 2                   | 4 | 6 |      | 8  | 10         | 12        |    | B2 |
|      | <b>3</b> <i>x</i>  | 3                   | 6 | 9 |      | 12 | 15         | 18        |    | DZ |
|      | x <sup>2</sup>     | 1                   | 4 | 9 |      | 16 | 25         | 36        |    |    |
|      | x <sup>2</sup>     | 1                   | 4 | 9 |      | 16 | 25         | 36        |    |    |

| Q    | Answer                                                                           | Mark | Comments                                                                                                                 |   |  |  |
|------|----------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------|---|--|--|
|      | $\frac{8}{18}$ or $\frac{4}{9}$<br>or 0.44(4) or 44(.4)%                         | B1ft | oe fraction, decimal or perce<br>ft their table with $\ge 12$ values<br>must be using 18 for the tota<br>possible scores | 6 |  |  |
|      | Additional Guidance                                                              |      |                                                                                                                          |   |  |  |
| 7(b) | Ignore simplification or conversion at seen                                      |      |                                                                                                                          |   |  |  |
|      | Ratio answer eg 8 : 18, even alongside a correct probability is B0               |      |                                                                                                                          |   |  |  |
|      | ft decimals or percentages must be correct to the same accuracy as in the scheme |      |                                                                                                                          |   |  |  |
|      | eg 10 winning values in their table                                              |      |                                                                                                                          |   |  |  |
|      | $\frac{10}{18}$ or 0.55(5) or 0.56 or 0.556 or 55(.5)% or 56% or 55.6%           |      |                                                                                                                          |   |  |  |

| Q    | Answer                                                                                                                                                  | Mark                 | Comments                                                                                                                                                                                           |                   |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
|      | 711 × their $\frac{8}{18}$                                                                                                                              | M1                   | oe<br>ft their probability from (b)<br>or if no probability in (b), ft th<br>with ≥ 12 values<br>where 0 < their probability <<br>probabilities, if rounded in (c<br>truncated or rounded to at le | : 1<br>), must be |  |
|      | 316                                                                                                                                                     | A1                   | SC2 395                                                                                                                                                                                            |                   |  |
|      | Ad                                                                                                                                                      | ditional G           | Guidance                                                                                                                                                                                           |                   |  |
|      | Answer 316                                                                                                                                              |                      |                                                                                                                                                                                                    | M1A1              |  |
|      | $\frac{316}{711}$ on answer line                                                                                                                        | M1A0                 |                                                                                                                                                                                                    |                   |  |
|      | Condone 316 out of 711                                                                                                                                  | M1A1                 |                                                                                                                                                                                                    |                   |  |
| 7(c) | Do not treat estimating by rounding a eg1 700 used instead of 711 eg2 (b) $0.44$ (c) $0.4 \times 711$ (round eg3 (b) $0.4$ (c) $0.4 \times 711$ (follow | M0A0<br>M0A0<br>M1A0 |                                                                                                                                                                                                    |                   |  |
|      | Do not allow ft for a ratio from (b) but may ft their (a) instead                                                                                       |                      |                                                                                                                                                                                                    |                   |  |
|      | For 0.44 × 711, accept 44% × 711 burne recovered                                                                                                        |                      |                                                                                                                                                                                                    |                   |  |
|      | The method mark may be implied by the nearest integer or rounded up to                                                                                  |                      |                                                                                                                                                                                                    |                   |  |
|      | eg1 (b) <del>7</del> 18                                                                                                                                 |                      |                                                                                                                                                                                                    |                   |  |
|      | (c) 276.5 or 276 or 277 (correct f                                                                                                                      | M1A0                 |                                                                                                                                                                                                    |                   |  |
|      | eg2 (a) completed table has 7 winning values (b) no probability shown (c) 276.5 or 276 or 277 (correct ft method implied using (a))                     |                      |                                                                                                                                                                                                    |                   |  |

| Q | Answer                                    | Mark | Comments                                                                  |  |  |  |
|---|-------------------------------------------|------|---------------------------------------------------------------------------|--|--|--|
|   | a = 8 and $b = 6$                         | B2   | B1 $a-3=5$ or $a=3+5$ or $a=8$<br>or<br>$2b=12$ or $b=12 \div 2$ or $b=6$ |  |  |  |
|   |                                           |      | SC1 $a = 6$ and $b = 8$                                                   |  |  |  |
| 8 | Additional Guidance                       |      |                                                                           |  |  |  |
|   | Ignore working if B2 or B1 or SC1 set     |      |                                                                           |  |  |  |
|   | $(a-3)x^2 = 5x^2$ with no further correct | B0   |                                                                           |  |  |  |
|   | For B1 do not allow embedded value        | B0   |                                                                           |  |  |  |

| Q | Answer                                                                                                                                                      | Mark        | Comments                                                                                                                                                |          |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | Identifies (6, 3) or (7, 9)<br>or (-4, 3) or (-3, 9)<br>Identifies (6, 3) and (7, 9)                                                                        | M1          | may be seen on the grid<br>mark intention on diagram<br>eg parallelogram drawn with or<br>vertices at (6, 3) or (6, 3) plott<br>may be seen on the grid |          |
|   | or<br>identifies (-4, 3) and (-3, 9)                                                                                                                        | M1dep       | mark intention on diagram<br>eg parallelogram drawn with tw<br>vertices at (6, 3) and (7, 9)<br><b>or</b> (6, 3) and (7, 9) plotted                     | o of the |
| 9 | Both diagonals drawn for one of the<br>correct parallelograms<br>or<br>centre of one of the correct<br>parallelograms identified<br>or<br>(4, 6) or (-1, 6) | M1dep       | mark intention on diagram<br>M3 may be implied<br>eg $\left(\frac{1+7}{2}, \frac{9+3}{2}\right)$ or $\left(\frac{-4+2}{2}, \frac{9+3}{2}\right)$        |          |
|   | (4, 6) and (-1, 6)                                                                                                                                          | A1          |                                                                                                                                                         |          |
|   | Ad<br>Up to M3 may be awarded for correct<br>answer, even if this is seen amongst                                                                           |             | n no answer or incorrect                                                                                                                                |          |
|   | Both answers correct (ignore working)                                                                                                                       |             |                                                                                                                                                         | M3A1     |
|   | One answer correct (ignore working)                                                                                                                         |             |                                                                                                                                                         | M3A0     |
|   | For first 2 marks condone correct points plotted even if labelled incorrectly                                                                               |             |                                                                                                                                                         |          |
|   | Up to M2 can be awarded for coordinates given as answers                                                                                                    |             |                                                                                                                                                         |          |
|   | Arc centre A radius 5 cm passing thro<br>sufficient to award M1 etc                                                                                         | ough (6, 3) | ) and/or (-4 , 3) is not                                                                                                                                |          |

| Q  | Answer                                                                                                                                                                                              | Mark                 | Comments                                                                                                                                    |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$                                                                                                                                                             | B2                   | B1 $\begin{pmatrix} 4 \\ \dots \end{pmatrix}$ or $\begin{pmatrix} \dots \\ -3 \end{pmatrix}$<br>SC1 $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ |     |
|    | Ad                                                                                                                                                                                                  | ditional G           | Guidance                                                                                                                                    |     |
|    | (4, -3) or $\begin{pmatrix} -3\\4 \end{pmatrix}$                                                                                                                                                    |                      |                                                                                                                                             | B0  |
|    | Ignore words if a vector is also seen                                                                                                                                                               |                      |                                                                                                                                             |     |
|    | eg1 Reflection $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$                                                                                                                                              |                      |                                                                                                                                             | B2  |
| 10 | eg2 4 right 3 up and $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$                                                                                                                                         |                      |                                                                                                                                             | B1  |
|    | eg3 4 right 3 down                                                                                                                                                                                  |                      |                                                                                                                                             | B0  |
|    | eg4 Rotate 4 left and 3 up and $\begin{pmatrix} -4\\ 3 \end{pmatrix}$                                                                                                                               |                      |                                                                                                                                             | SC1 |
|    | Condone any type of brackets                                                                                                                                                                        |                      |                                                                                                                                             |     |
|    | Condone missing brackets for B2 or l in a column                                                                                                                                                    | B1 or SC1            | I but must have two numbers                                                                                                                 |     |
|    | Condone 'fraction line' for B2 or B1 o column                                                                                                                                                       | r SC1 but            | must have two numbers in a                                                                                                                  |     |
|    | $\begin{pmatrix} 4x \\ -3y \end{pmatrix} \text{ or } \begin{pmatrix} x4 \\ -y3 \end{pmatrix} \text{ or } \begin{pmatrix} x+4 \\ y-3 \end{pmatrix} \text{ or } \begin{pmatrix} x \\ 3 \end{pmatrix}$ | 4 right<br>3 down) o | or $\begin{pmatrix} 4 \\ 3 \\ d \end{pmatrix}$ or $\begin{pmatrix} 4 \\ - \\ 3 \\ \downarrow \end{pmatrix}$                                 | B0  |

| Q  | Answer                                                | Mark       | Comments                                                        |
|----|-------------------------------------------------------|------------|-----------------------------------------------------------------|
|    | Alternative method 1 Compares 7                       | 0% of volu | ume of hemisphere with volume of water                          |
|    | $\frac{4}{3}$ × $\pi$ × 12 <sup>3</sup> or 2304 $\pi$ |            | oe eg $\frac{4}{3}\pi \times 1728$                              |
|    | or [7216, 7239.2]<br>or                               | M1         | allow without any multiplication signs eg $\frac{4}{3}\pi 12^3$ |
|    | $\frac{2}{3} \times \pi \times 12^3$ or 1152 $\pi$    |            | 3                                                               |
|    | or [3581, 3638]                                       |            |                                                                 |
|    | 0.7 × their 1152π or 806.4π<br>or [2506, 2547]        | M1dep      | oe<br>0.7 × their [3581, 3638] or $\frac{4032}{5}\pi$           |
|    |                                                       |            | must be using volume of hemisphere                              |
|    | 325 × 8 or 2600                                       | M1         | ое                                                              |
|    | [2506, 2547] and 2600 and Yes                         | A1         | oe                                                              |
| 11 | Alternative method 2 Works out vo                     | olume of w | vater as proportion of volume of hemisphere                     |
|    | $\frac{4}{3}$ × $\pi$ × 12 <sup>3</sup> or 2304 $\pi$ |            | oe eg $\frac{4}{3}\pi \times 1728$                              |
|    | or [7216, 7239.2]<br>or                               | M1         | allow without any multiplication signs $4 \pi 4^3$              |
|    | $\frac{2}{3} \times \pi \times 12^3$ or 1152 $\pi$    |            | eg $\frac{4}{3}\pi 12^3$                                        |
|    | or [3581, 3638]                                       |            |                                                                 |
|    | 325 × 8 or 2600                                       | M1         | ое                                                              |
|    | their 2600 $\div$ their 1152 $\pi$                    |            | oe eg their 2600 ÷ their [3581, 3638]                           |
|    | or [0.71, 0.73]                                       | M1dep      | or 72%<br>dep on M2                                             |
|    |                                                       |            | must be using volume of hemisphere                              |
|    | [71, 73](%) and Yes                                   | A1         | oe eg 0.72 and 0.7 and Yes                                      |

# Question 11 continues on the next page

|            | Alternative method 3 Works out tir                                                                                      | ne to fill 7 | 0% of volume of hemisphere                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
|            | $\frac{4}{3}$ × π × 12 <sup>3</sup> or 2304π<br>or [7216, 7239.2]<br>or<br>$\frac{2}{3}$ × π × 12 <sup>3</sup> or 1152π | M1           | oe eg $\frac{4}{3}\pi \times 1728$<br>allow without any multiplication signs<br>eg $\frac{4}{3}\pi 12^3$                      |
|            | or [3581, 3638]                                                                                                         |              |                                                                                                                               |
| 11<br>cont | 0.7 × their 1152π or 806.4π<br>or [2506, 2547]<br>or<br>their 1152π ÷ 325<br>or [11, 11.2]                              | M1dep        | oe<br>0.7 × their [3581, 3638] or $\frac{4032}{5}\pi$<br>or<br>their [3581, 3638] ÷ 325<br>must be using volume of hemisphere |
|            | 0.7 × their 1152π ÷ 325<br>or 0.7 × their [3581, 3638] ÷ 325<br>or [7.7, 7.84]                                          | M1dep        | oe<br>their [2506, 2547] ÷ 325<br>or 0.7 × their [11, 11.2]                                                                   |
|            | [7.7, 7.84] and Yes                                                                                                     | A1           | oe                                                                                                                            |

# Question 11 continues on the next page

|            | Additional Guidance                                                                                                         |       |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
|            | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |       |
|            | Allow 1.33() for $\frac{4}{3}$                                                                                              |       |
|            | Allow 0.66() or 0.67 for $\frac{2}{3}$                                                                                      |       |
|            | $\pi$ may be seen as [3.14, 3.142] eg Alt 1 $\frac{2}{3} \times 3.14 \times 12^3$                                           | M1    |
|            | If a number (or calculation) in terms of $\pi$ is seen but $\pi$ is subsequently omitted, treat as a miscopy for M marks    |       |
|            | eg Alt 1                                                                                                                    |       |
| 11<br>cont | 1152π                                                                                                                       | M1    |
|            | $0.7 \times 1152 = 806.4$                                                                                                   | M1dep |
|            | 325 × 8 = 2600 Yes                                                                                                          | M1A0  |
|            | Yes cannot be implied by inequalities                                                                                       |       |
|            | Alts 1 and 2                                                                                                                |       |
|            | $325 \mathrm{cm}^3 \times 8$ seen is M1 even if evaluated incorrectly                                                       |       |
|            | $325^3 \times 8$ seen is M0 unless recovered to 2600                                                                        |       |
|            | Do not allow misreads of the given formula unless recovered                                                                 |       |
|            | eg1 using 12 <sup>2</sup> instead of 12 <sup>3</sup>                                                                        |       |
|            | eg2 using $\frac{3}{4}$ instead of $\frac{4}{3}$                                                                            |       |
|            | For 0.7 × their 1152 $\pi$ , do not accept 70% × their 1152 $\pi$ unless recovered                                          |       |

| Q  | Answer                                                                                                                                                                                                                              | Mark                    | Comments                                                                                                               |              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|--------------|
|    | 8 ÷ 5 or 19.2 ÷ 12<br>or $\frac{8}{5}$ or $\frac{19.2}{12}$ or 1.6<br>or<br>12 ÷ 5 or 19.2 ÷ 8<br>or $\frac{12}{5}$ or $\frac{19.2}{8}$ or 2.4                                                                                      | M1                      | oe use of a valid pair of side<br>appropriate calculation or va<br>eg 5 ÷ 8 or 0.625<br>or<br>5 ÷ 12 or [0.416, 0.417] |              |
|    | $8 \div 5 = 19.2 \div 12 \text{ or } \frac{8}{5} = \frac{19.2}{12}$<br>or<br>$12 \div 5 = 19.2 \div 8 \text{ or } \frac{12}{5} = \frac{19.2}{8}$                                                                                    | A1                      | oe showing sides are in prop<br>eg 5 ÷ 8 = 12 ÷ 19.2<br>or<br>$\frac{5}{12} = \frac{8}{19.2}$                          | portion      |
|    | Additional Guidance                                                                                                                                                                                                                 |                         |                                                                                                                        |              |
|    | For A1 equating may be implied by two calculations or two fractions with correct evaluation                                                                                                                                         |                         |                                                                                                                        |              |
|    | eg 8 ÷ 5 = 19.2 ÷ 12 is implied by 8 = 5 × 1.6 and 19.2 = $12 \times 1.6$                                                                                                                                                           |                         |                                                                                                                        | M1A1         |
| 12 | For A1 equating may be implied by calculations                                                                                                                                                                                      |                         |                                                                                                                        |              |
|    | eg1 8 $\div$ 5 = 19.2 $\div$ 12 is implied by                                                                                                                                                                                       | 8 ÷ 5 = ′               | 1.6 and 12 × 1.6 = 19.2                                                                                                | M1A1         |
|    | eg2 8 $\div$ 5 = 19.2 $\div$ 12 is implied by                                                                                                                                                                                       | $\frac{8}{5} \times 12$ | = 19.2                                                                                                                 | M1A1         |
|    | 5 × 19.2 = 8 × 12                                                                                                                                                                                                                   |                         |                                                                                                                        | M1A1         |
|    | 5 × 19.2 = 96 and 8 × 12 = 96                                                                                                                                                                                                       |                         |                                                                                                                        | M1A1         |
|    | Non-contradictory working can be igr<br>eg correct response along with area o                                                                                                                                                       |                         | าร                                                                                                                     | M1A1         |
|    | Ignore words eg references to scale                                                                                                                                                                                                 | factors, e              | nlargement, angles                                                                                                     |              |
|    | Working on diagrams may be seen<br>eg1 Arrows or lines from 5 to 8 and 12 to 19.2 with × 1.6 on them<br>eg2 Arrows or lines from 5 to 8 and 12 to 19.2 with 1.6 on them<br>Arrows or lines must unambiguously link relevant numbers |                         | with 1.6 on them                                                                                                       | M1A1<br>M1A0 |
|    | For 8 ÷ 5 or $\frac{8}{5}$ allow 8 : 5 etc                                                                                                                                                                                          |                         |                                                                                                                        |              |

| Q  | Answer                                                                                                                                          | Mark        | Comments                                                                                                                                                                                 |                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|    | 80 × x or 80x or x × 80 or x80<br>or<br>$x \div 60$ or $\frac{x}{60}$ or $\frac{1}{60}x$ or $x\frac{1}{60}$<br>or<br>80 ÷ 60 or $\frac{80}{60}$ | M1          | teabags per hour<br>boxes per minute                                                                                                                                                     |                              |
|    | $\frac{80x}{60} \left(=\frac{4x}{3}\right)$<br>or<br>$80 \div 60 \times x \left(=\frac{4x}{3}\right)$                                           | A1          | oe showing 80 and 60 and $\frac{x}{60}$<br>eg $\frac{80 \times x}{60} \left(=\frac{4x}{3}\right)$ or $x\frac{80}{60}$<br>or $\frac{80}{60} \times x \left(=\frac{4x}{3}\right)$ or $80x$ | $\left(=\frac{4x}{3}\right)$ |
|    | Ad                                                                                                                                              | ditional G  | Guidance                                                                                                                                                                                 |                              |
|    | M1 may be awarded for correct work even if this is seen amongst multiple                                                                        |             | nswer or incorrect answer,                                                                                                                                                               |                              |
| 13 | Do not allow M1 if only seen embedd<br>calculation eg $80x \times 4 = 320x$                                                                     | led in an i | ncorrect expression or                                                                                                                                                                   | МО                           |
|    | $60 \times \frac{4x}{3} = 80x$ (M1 allowed as $80x$ is<br>expression or calculation, A0 becaus                                                  |             |                                                                                                                                                                                          | M1A0                         |
|    | Condone $x = 80 \div 60$                                                                                                                        |             |                                                                                                                                                                                          | M1A0                         |
|    | $\frac{80x}{60} \left(=\frac{4x}{3}\right)$                                                                                                     |             |                                                                                                                                                                                          | M1A1                         |
|    | $\frac{80}{60} = \frac{4}{3} \text{ and } \frac{4}{3} \times x \left(=\frac{4x}{3}\right)$                                                      |             |                                                                                                                                                                                          | M1A1                         |
|    | $\frac{80}{60} = \frac{4}{3}$ and $\frac{4x}{3}$                                                                                                |             |                                                                                                                                                                                          | M1A0                         |
|    | No equivalents allowed for M1                                                                                                                   |             |                                                                                                                                                                                          |                              |
|    | Ignore units                                                                                                                                    |             |                                                                                                                                                                                          |                              |
|    | Condone 1.33() for $\frac{4}{3}$                                                                                                                |             |                                                                                                                                                                                          |                              |
|    | Ignore non-contradictory working after                                                                                                          | er M1A1 s   | een                                                                                                                                                                                      |                              |

| Q     | Answer                                                                                                                                                                  | Mark  | Comments                                                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Alternative method 1 Works out b<br>with hourly                                                                                                                         |       | ate of the percentage of employees<br>than £17                                                                                                                    |
|       | 32÷2 or 16                                                                                                                                                              | M1    | oe<br>implied by 41 or 82                                                                                                                                         |
|       | $(15 + 10 + \text{their 16}) \div 123$<br>or 41 ÷ 123<br>or $\frac{1}{3}$ or 0.33()<br>or<br>(66 + their 16) ÷ 123<br>or 82 ÷ 123<br>or $\frac{2}{3}$ or 0.66() or 0.67 | M1dep | oe eg (123 – 66 – their 16) ÷ 123<br>or<br>13(.0)(%) + [12, 12.2](%) + 8(.1)(%)                                                                                   |
| 14(a) | 33(.3)(%)                                                                                                                                                               | A1    | oe eg 0.33(3) and 0.3<br>allow 33.2(%)<br>from 13(%) + 12.2(%) + 8(%)<br>SC3 37 (or 36.9) and explains that a<br>minimum of 12 of 32 people earn more<br>than £17 |
|       | -                                                                                                                                                                       |       | nate of the number of employees with hourly<br>vith 30% of number of employees                                                                                    |
|       | 32÷2 or 16                                                                                                                                                              | M1    | oe<br>implied by 41 or 82                                                                                                                                         |
|       | 0.3 × 123 or 36.9<br>or<br>0.7 × 123 or 86.1                                                                                                                            | M1    | oe<br>accept 36 or 37 for 36.9<br>accept 86 or 87 for 86.1                                                                                                        |
|       | 41 and 36.9<br>or<br>82 and 86.1                                                                                                                                        | A1    | accept 36 or 37 for 36.9<br>accept 86 or 87 for 86.1<br>SC3 37 (or 36.9) and explains that a<br>minimum of 12 of 32 people earn more<br>than £17                  |

Question 14(a) continues on the next page

| Alternative method 3 Shows that               | a value o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f x gives a percentage $> 30\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $(15 + 10 + x) \div 123$                      | MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oe eg (25 + <i>x</i> ) ÷ 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| where $12 \leq x \leq 32$                     | IVIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | must see 15 and 10 or 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| (15 + 10 + <i>x</i> ) ÷ 123                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evaluations rounded or truncated to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| where $12 \leq x \leq 32$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nearest integer or better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| and                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| evaluates                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | than £17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $(15 + 10 + x) \div 123 \times 100$ correctly |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Alternative method 4 Shows a nu               | imber of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | employees that gives a percentage > 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0.3 × 123 or 36.9                             | N 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ое                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               | IVI I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | accept 36 or 37 for 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 15 + 10 + x or $25 + x$                       | Mada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | must see 15 and 10 <b>or</b> 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| where $12 \leq x \leq 32$                     | widep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 36.9 and                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | accept 36 or 37 for 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| evaluates $15 + 10 + x$ correctly             | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SC3 37 (or 36.9) and explains that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| where $12 \leq x \leq 32$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | minimum of 12 of 32 people earn more than £17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Ad                                            | ditional (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| • •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 16 may be seen by the table                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Alt 1 67% needs further explanation           | to score A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Ignore irrelevant working in an otherv        | vise fully c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | correct response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| For the SC3, minimum of 12 may be             | implied by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / an explanation that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 10 + 15 + x is at least 37 or $25 + x$ is     | at least 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Responses involving interpolation sho         | ould be es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | scalated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                               | $(15 + 10 + x) \div 123$ where $12 \le x \le 32$ $(15 + 10 + x) \div 123$ where $12 \le x \le 32$ and evaluates $(15 + 10 + x) \div 123 \times 100 \text{ correctly}$ Alternative method 4 Shows a nu $0.3 \times 123 \text{ or } 36.9$ $15 + 10 + x \text{ or } 25 + x$ where $12 \le x \le 32$ $36.9 \text{ and}$ evaluates $15 + 10 + x \text{ correctly}$ where $12 \le x \le 32$ $36.9 \text{ and}$ evaluates $15 + 10 + x \text{ correctly}$ where $12 \le x \le 32$ $4d$ Up to M2 may be awarded for correct answer, even if this is seen amongst $16 \text{ may be seen by the table}$ Alt 1 67% needs further explanation Ignore irrelevant working in an otherw For the SC3, minimum of 12 may be $10 + 15 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is at least } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ is } 37 \text{ or } 25 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37 \text{ or } 35 + x \text{ or } 37  or$ | $(15 + 10 + x) \div 123$<br>where $12 \le x \le 32$ M2 $(15 + 10 + x) \div 123$<br>where $12 \le x \le 32$<br>and<br>$(15 + 10 + x) \div 123 \times 100$ correctlyA1evaluates<br>$(15 + 10 + x) \div 123 \times 100$ correctlyA1Alternative method 4Shows a number of explanation $0.3 \times 123$ or $36.9$ M1 $15 + 10 + x$ or $25 + x$<br>where $12 \le x \le 32$ M1dep $36.9$ and<br>evaluates $15 + 10 + x$ correctly<br>where $12 \le x \le 32$ A1Additional CUp to M2 may be awarded for correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>answer, even if this is seen amongst multiple additional correct work with<br>additional correct work with answer, even if this is seen amongst multiple additional correct work with<br>additional correct work with additional correct work work work work work work work work |  |

| Q     | Answer                                                                       | Mark       | Comments                                              |          |
|-------|------------------------------------------------------------------------------|------------|-------------------------------------------------------|----------|
|       | Valid reason                                                                 | B1         | eg all employees in the second may earn less than £17 | interval |
|       | Ad                                                                           | ditional G | Guidance                                              |          |
|       | Fewer than 12 employees could earn                                           | n more tha | n £17 per hour                                        | B1       |
|       | Only 10 might get more than £17 in s<br>(10 could be replaced by any integer |            |                                                       | B1       |
|       | More than 12 in group 2 earn less that                                       | an £17     |                                                       | B0       |
|       | Everyone in second group may earn                                            | 14 or 15 ( | or 16                                                 | B1       |
|       | 21 people may earn between £14 an (21 could be replaced by any integer       |            | o 32 inclusive)                                       | B1       |
|       | More people may earn between £14 and £17                                     |            |                                                       | B0       |
| 14(b) | People in the 14 to 20 group aren't evenly distributed                       |            |                                                       | B0       |
|       | Not everyone in 14 – 20 earns more than £17                                  |            |                                                       | B0       |
|       | Not many in second group may get n                                           | nore than  | £17                                                   | B0       |
|       | Some of second group may get more                                            | e than £17 | ,                                                     | B0       |
|       | 14 to 20 includes people who get less                                        | s than £17 | 7                                                     | B0       |
|       | 2nd group includes some getting less<br>than 17                              | s than 17  | and some getting more                                 | B0       |
|       | We don't know what each person earns                                         |            |                                                       | B1       |
|       | We don't know how many of 2nd group earn less than £17 per hour              |            |                                                       | B1       |
|       | Under £17 isn't in the data                                                  |            |                                                       | B1       |
|       | Grouped data or it is only an estimate                                       | e or using | midpoints or data is wrong                            | B0       |
|       | Ignore irrelevant working but do not i                                       | gnore inco | prrect working                                        |          |

| Q     | Answer                                                                                                  | Mark                                                                        | Comments                                                                                                               |                  |  |
|-------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------|--|
|       | 12 × 66 or 792<br>and<br>17 × 32 or 544<br>and<br>30 × 15 or 450<br>and<br>70 × 10 or 700               | M1                                                                          | oe<br>implied by 2486<br>may be seen by the table<br>allow one product or <i>fx</i> value<br>incorrect                 | e to be          |  |
|       | (their 792 + their 544 + their 450 +<br>their 700) ÷ 123<br>or<br>2486 ÷ 123                            | M1dep                                                                       | oe eg $\frac{792 + 544 + 450 + 700}{66 + 32 + 15 + 10}$<br>condone bracket error if worl<br>eg 792 + 544 + 450 + 700 ÷ | king seen<br>123 |  |
| 14(c) | 20.2(1)       A1       allow 20.20 if M2 seen and no errors         Additional Guidance                 |                                                                             |                                                                                                                        |                  |  |
|       | Four values with three correct from 792, 544, 450, 700 can score up to M2 if they add and divide by 123 |                                                                             |                                                                                                                        |                  |  |
|       | Correct products or values seen but a                                                                   | Correct products or values seen but a different method used eg 123 $\div$ 4 |                                                                                                                        | MOMO             |  |
|       | 20.2(1) in working with answer give                                                                     | en as the i                                                                 | interval 20 $\leq p < 40$                                                                                              | M2A0             |  |
|       | Ignore any references to statement E<br>eg £20.21 which makes B wrong                                   | 3                                                                           |                                                                                                                        | M2A1             |  |
|       | Condone 20.2, 20.21 etc for 20.21138                                                                    |                                                                             |                                                                                                                        |                  |  |
|       | Do not allow rounding of any of their<br>eg 792 544 450 700<br>(800 + 544 + 450 + 700) ÷ 123            | 4 values i                                                                  | n the second mark                                                                                                      | M1<br>M0         |  |

| Q     | Answer                                                                     | Mark            | Comments          |    |
|-------|----------------------------------------------------------------------------|-----------------|-------------------|----|
|       | Valid reason referring to the distribution                                 |                 |                   |    |
|       |                                                                            | Additional C    | Guidance          |    |
|       | Less than a half earned more tha                                           | n £20           | E                 | B1 |
|       | Over a half earned between £10 a                                           | and £14         | E                 | B1 |
|       | Lots earned 10 to 14                                                       |                 | E                 | B0 |
|       | Only 25 people were over £20                                               |                 | I                 | B1 |
|       | 25 people were over £20                                                    |                 | I                 | B0 |
|       | Not many earned more than the r                                            | nean            | I                 | B0 |
|       | Most earned less than £20                                                  |                 |                   | B1 |
|       | Some earned less than the mean, some earned more                           |                 |                   | B0 |
|       | Mean is not a real amount of money                                         |                 |                   | B0 |
|       | Median is between £10 and £14                                              |                 |                   | B1 |
| 14(d) | Median is better or mode is better                                         |                 |                   | B0 |
|       | Modal class is $10 \le p < 14$                                             |                 |                   | B1 |
|       | The mode is between £10 and £14 (condone mode as modal class)              |                 |                   | B1 |
|       | We don't know what each person earns                                       |                 |                   | B0 |
|       | Grouped data or it is only an estimate or using midpoints or data is wrong |                 |                   | B0 |
|       | The range is large                                                         |                 |                   | B0 |
|       | The data has extreme values or c                                           | outliers or and | omalous values    | B1 |
|       | The data is (positively) skewed                                            |                 |                   | B1 |
|       | The distribution is not symmetrical                                        |                 |                   | B1 |
|       | The distribution is not evenly spread                                      |                 |                   | B1 |
|       | Not representative                                                         |                 | I                 | B0 |
|       | Lots of low values or high values                                          | can make the    | e mean inaccurate | B0 |
|       | Ignore irrelevant working but do n                                         | ot ignore inco  | orrect working    | _  |

| Q  | Answer                                                                                                                                                                                                  | Mark          | Comments                   |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|--|--|--|
|    | $2x^{3} - 18x^{2}y + 5x^{2}y - 45xy^{2}$ exactly 4 terms with 3 correct<br>terms in any order<br>M1 $M1$ $may be seen in a grid implied by 2x^{3} - 13x^{2}y withterm or -13x^{2}y - 45xy^{2} withterm$ |               |                            |  |  |  |
|    | $2x^{3} - 18x^{2}y + 5x^{2}y - 45xy^{2}$<br>or<br>$2x^{3} - 13x^{2}y - 45xy^{2}$                                                                                                                        | grid          |                            |  |  |  |
|    | Ad                                                                                                                                                                                                      |               |                            |  |  |  |
|    | A correct term includes the sign (in a                                                                                                                                                                  |               |                            |  |  |  |
| 15 | Condone four correct terms followed<br>otherwise do not allow further incorre<br>eg1 $2x^3 - 18x^2y + 5x^2y - 45xy^2 = 2x^3$<br>eg2 $2x^3 - 18x^2y + 5x^2y - 45xy^2 = 36$ .                             | M1A1<br>M1A0  |                            |  |  |  |
|    | Allow equivalent fully simplified terms                                                                                                                                                                 | s eg 5 $x^2y$ | $y$ may be seen as $5yx^2$ |  |  |  |
|    | For M1 allow coefficients to be incorrectly positioned<br>eg $x^{3}2 - 18x^{2}y + y5x^{2} - 45xy^{2}$                                                                                                   |               |                            |  |  |  |
|    | $2x^3 + -18x^2y + 5x^2y + -45xy^2$ has 4 simplification to score A1                                                                                                                                     | M1A0          |                            |  |  |  |
|    | Terms must be processed<br>eg do not allow $x^2 \times 2x$ for $2x^3$                                                                                                                                   |               |                            |  |  |  |

| Q  | Answer                                                                                                                  | Mark                                                   | Comments                                                 |      |  |
|----|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------|--|
|    | $13 = 7a - 1$ oe eg $\frac{131}{7 - 0}$ or $(a =) 2$ M1         oe eg $\frac{131}{7 - 0}$ may be implied eg $(y =) 2x$  |                                                        |                                                          |      |  |
|    | (y =) $\frac{3}{5}x$<br>or (gradient B =) $\frac{3}{5}$                                                                 | M1                                                     | oe eg (gradient B =) 0.6<br>allow (y =) $\frac{3x+4}{5}$ |      |  |
|    | gradient A = 2<br>and gradient B = $\frac{3}{5}$                                                                        | oe eg 2 > $\frac{3}{5}$<br>condone 2x > $\frac{3}{5}x$ |                                                          |      |  |
|    | Ad                                                                                                                      | ditional G                                             | Buidance                                                 |      |  |
|    | Up to M2 may be awarded for correct answer, even if this is seen amongst                                                |                                                        |                                                          |      |  |
| 16 | Condone incorrect <i>y</i> -intercept<br>eg $a = 2$ $y = \frac{3}{5}x + 4$<br>gradient A = 2 gradient B = $\frac{3}{5}$ |                                                        |                                                          |      |  |
|    | It must be clear that the values 2 and question to award A1                                                             |                                                        |                                                          |      |  |
|    | eg1 gradient $A = 2$ and gradient $B = 2$                                                                               | M2A1                                                   |                                                          |      |  |
|    | eg2 $a = 2$ $y = \frac{3}{5}x + \frac{4}{5}$                                                                            |                                                        |                                                          | M2A0 |  |
|    | eg3 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$                                                                   | ter than $\frac{3}{5}$                                 | M2A1                                                     |      |  |
|    | eg4 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$                                                                   | M2A0                                                   |                                                          |      |  |
|    | 13 = 7x - 1 or $x = 2$ must be recover                                                                                  | ered to aw                                             | vard 1st M1                                              |      |  |

| Q  | Answer                                                                                | Mark  | Comments                                                                                                          |  |  |
|----|---------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|--|--|
|    | Alternative method 1 Works out AC and uses it in triangle ABC                         |       |                                                                                                                   |  |  |
|    | $\cos 37 = \frac{AC}{4}$                                                              | M1    | oe eg sin 53 = $\frac{AC}{4}$<br>allow [0.798, 0.8] for cos 37 or sin 53                                          |  |  |
|    | (AC =) 4 × cos 37<br>or (AC =) [3.19, 3.2]                                            | M1dep | oe eg ( $AC =$ ) 4 × sin 53<br>allow [0.798, 0.8] for cos 37 or sin 53<br>may be seen on diagram                  |  |  |
|    | sin $x = \frac{\text{their} [3.19, 3.2]}{9.3}$<br>or $(x =) \sin^{-1} [0.34, 0.3441]$ | M1dep | oe eg cos $x = \frac{\sqrt{9.3^2 - \text{their } [3.19, 3.2]^2}}{9.3}$<br>or $(x =) 90 - \cos^{-1}[0.34, 0.3441]$ |  |  |
| 17 | [19.87, 20.13]                                                                        | A1    |                                                                                                                   |  |  |
|    | Alternative method 2 Works out angle ADC and uses it in triangle ABD                  |       |                                                                                                                   |  |  |
|    | (angle <i>ADC</i> =) 90 – 37<br>or (angle <i>ADC</i> =) 53                            | M1    | oe eg (angle $ADC =$ ) 180 – 90 – 37<br>may be seen on diagram                                                    |  |  |
|    | $\frac{\sin x}{4} = \frac{\sin (90 - 37)}{9.3}$                                       | M1dep | oe eg $\frac{4}{\sin x} = \frac{9.3}{\sin 53}$                                                                    |  |  |
|    | $(\sin x =) \frac{\sin (90 - 37)}{9.3} \times 4$                                      | M1dep | oe                                                                                                                |  |  |
|    | or $(x =) \sin^{-1}[0.34, 0.3441]$                                                    |       |                                                                                                                   |  |  |
|    | [19.87, 20.13]                                                                        | A1    |                                                                                                                   |  |  |

### Question 17 continues on the next page

|            | Additional Guidance                                                                                                         |    |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|----|--|--|
|            | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |    |  |  |
|            | Allow any unambiguous notation for angles eg allow <i>B</i> for <i>x</i>                                                    |    |  |  |
|            | Alt 1 Allow any unambiguous notation for $AC = g y$<br>(condone x if clearly referring to $AC$ )                            |    |  |  |
| 17<br>cont | Alt 1 1st M1 must be an equation where AC is the only variable<br>eg $AC^2 + (4 \sin 37)^2 = 4^2$                           |    |  |  |
|            | Alt 1 A calculation that leads to AC scores M1M1<br>eg $\sqrt{4^2 - (4\sin 37)^2}$                                          |    |  |  |
|            | Alt 1 3rd M1 must have sin $x$ (or cos $x$ ) as the subject or be a calculation that leads to $x$                           |    |  |  |
|            | Alt 2 53 only marked at angle BAC on diagram                                                                                | MO |  |  |

| Q  | Answer                                                                                                                                                                                        | Mark           | Comments                                                                                                                                         |               |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|    | xy = x + 8<br>or<br>$y = 1 + \frac{8}{x}$                                                                                                                                                     | M1             | oe equation with fraction elin<br>or<br>oe equation with single fract<br>two terms<br>eg $y \times x = x + 8$ or $y = \frac{x}{x} - \frac{x}{x}$ | on split into |  |
|    | $xy - x = 8$ or $x(y - 1) = 8$ M1depoe equation with x terms of<br>eg $x - xy = -8$ $x = \frac{8}{y - 1}$ or $x = \frac{-8}{1 - y}$ A1oe equation with x the sub<br>eg $-\frac{8}{1 - y} = x$ |                |                                                                                                                                                  |               |  |
| 10 |                                                                                                                                                                                               |                |                                                                                                                                                  |               |  |
| 18 | Ad                                                                                                                                                                                            |                |                                                                                                                                                  |               |  |
|    | Up to M2 may be awarded for correc answer, even if this is seen amongst                                                                                                                       |                |                                                                                                                                                  |               |  |
|    | Correct answer in working with answer repeated on answer line without $x =$<br>eg $x = \frac{8}{y-1}$ seen in working with answer $\frac{8}{y-1}$ M1N                                         |                |                                                                                                                                                  |               |  |
|    | Do not allow incorrect simplification a                                                                                                                                                       | ct answer seen |                                                                                                                                                  |               |  |
|    | eg $x = \frac{8}{y-1}$ $x = \frac{8}{y} - 8$                                                                                                                                                  |                | M2A0                                                                                                                                             |               |  |
|    | xy - x - 8 = 0 with no further correct                                                                                                                                                        | M1M0           |                                                                                                                                                  |               |  |

| Q  | Answer                                                | Mark          | Comments                                                                                              |
|----|-------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------|
|    | Alternative method 1 <i>n</i> th term =               | $an^2 + bn +$ | - C                                                                                                   |
|    | (second differences =) 10<br>or $a = 5$ or $5n^2$     | M1            | second difference seen at least once and<br>not contradicted by a different value<br>unless recovered |
|    |                                                       |               | may be seen by the sequence                                                                           |
|    | $3-5 \times 1^2$ and $20-5 \times 2^2$<br>or -2 and 0 |               | oe subtraction of $5n^2$ from any two consecutive terms                                               |
|    | or $b=2$ or $2n$                                      | M1dep         | eg 47 – 5 × 3 <sup>2</sup> and 84 – 5 × 4 <sup>2</sup>                                                |
|    |                                                       |               | <b>or</b> 2 and 4                                                                                     |
|    |                                                       |               | implied by $5n^2 + 2n \dots$                                                                          |
|    | $5 \times 1^2 + 2 \times 1 + c = 3$                   |               | oe substitution of $a = 5$ and $b = 2$                                                                |
|    | or $5 + 2 + c = 3$                                    |               | eg $5 \times 2^2 + 2 \times 2 + c = 20$                                                               |
|    | or                                                    | M1dep         | or                                                                                                    |
|    | $(2n + c \text{ and}) 2 \times 1 + c = -2$            |               | oe use of $2n + c$ and another term                                                                   |
|    |                                                       |               | eg $(2n + c \text{ and}) 2 \times 2 + c = 0$                                                          |
| 19 | $5n^2 + 2n - 4$                                       |               | terms in any order                                                                                    |
|    |                                                       | A1            | SC2 $a = 5$ and $c = -4$                                                                              |
|    |                                                       |               | SC1 $c = -4$                                                                                          |
|    | Alternative method 2 <i>n</i> th term =               | $an^2 + bn +$ | - <i>C</i>                                                                                            |
|    | (second differences =) 10<br>or $a = 5$ or $5n^2$     | M1            | second difference seen at least once and<br>not contradicted by a different value<br>unless recovered |
|    |                                                       |               | may be seen by the sequence                                                                           |
|    | $3 \times 5 + b = 17$                                 |               | oe substitution of $a = 5$                                                                            |
|    | or                                                    | M1dep         | eg $5 \times 5 + b = 27$                                                                              |
|    | b=2 or $2n$                                           |               | implied by $5n^2 + 2n \dots$                                                                          |
|    | $5 \times 1^2 + 2 \times 1 + c = 3$                   | M4 al a sa    | oe substitution of $a = 5$ and $b = 2$                                                                |
|    | or $5 + 2 + c = 3$                                    | M1dep         | eg $5 \times 2^2 + 2 \times 2 + c = 20$                                                               |
|    | $5n^2 + 2n - 4$                                       |               | terms in any order                                                                                    |
|    |                                                       | A1            | SC2 $a = 5$ and $c = -4$                                                                              |
|    |                                                       |               | SC1 $c = -4$                                                                                          |

|      | Alternative method 3 <i>n</i> th term =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Alternative method 3</b> <i>n</i> th term $= an^2 + bn + c$    |                                                                                                                       |     |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|      | Any 3 of<br>a + b + c = 3<br>4a + 2b + c = 20<br>9a + 3b + c = 47<br>16a + 4b + c = 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1                                                                | oe 3 equations                                                                                                        |     |  |  |  |
|      | 3a + b = 17 and $5a + b = 27or a = 5 and b = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1dep                                                             | oe pair of equations in <i>a</i> and <i>b</i><br>eg $8a + 2b = 44$ and $15a + 3b = 8$<br>implied by $5n^2 + 2n \dots$ |     |  |  |  |
|      | $5 \times 1^2 + 2 \times 1 + c = 3$<br>or $5 + 2 + c = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1dep                                                             | oe substitution of $a = 5$ and $b = 2$<br>eg $5 \times 2^2 + 2 \times 2 + c = 20$                                     |     |  |  |  |
| 19   | $5n^2 + 2n - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 terms in any order<br>SC2 $a = 5$ and $c = -4$<br>SC1 $c = -4$ |                                                                                                                       |     |  |  |  |
| cont | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                                                                                                       |     |  |  |  |
|      | Up to M3 may be awarded for correct answer, even if this is seen amongst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |                                                                                                                       |     |  |  |  |
|      | Second differences = 10 scores M1 e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                                                                                                       |     |  |  |  |
|      | Condone $n = 5n^2 + 2n - 4$ or $5n^2 + 3n^2 + 3n^2$ | M3A1                                                              |                                                                                                                       |     |  |  |  |
|      | Condone working in a different variable eg $5x^2 + 2x - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                                                                                       |     |  |  |  |
|      | The 3rd method mark cannot be imp<br>ie $c = -4$ is only awarded M3 if the p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                       |     |  |  |  |
|      | Alt 1 2nd M1 cannot be awarded for recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                       |     |  |  |  |
|      | SC2 or SC1 can be awarded from we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n the working lines                                               |                                                                                                                       |     |  |  |  |
|      | SC2 or SC1 can be implied by a qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dratic ans                                                        | wer                                                                                                                   |     |  |  |  |
|      | eg1 answer $5n^2 + 6n - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                                                                                       | SC2 |  |  |  |
|      | eg2 answer $10n^2 + 3n - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                                                                       | SC1 |  |  |  |

| Q                                                                | Answer              | Mark | Comments |    |  |
|------------------------------------------------------------------|---------------------|------|----------|----|--|
|                                                                  | 65                  | B1   |          |    |  |
| 20(a)                                                            | Additional Guidance |      |          |    |  |
| 65 unambiguously linked to $x$ on diagram with answer line blank |                     |      |          | B1 |  |

| Q     | Answer Mark Comments                      |            |          |  |
|-------|-------------------------------------------|------------|----------|--|
|       | It is greater than the answer to part (a) | B1         |          |  |
| 20(b) | Ade                                       | ditional G | Guidance |  |
|       |                                           |            |          |  |

| Q     | Answer                                             | Mark           | Comments                          |  |
|-------|----------------------------------------------------|----------------|-----------------------------------|--|
|       | No and valid statement                             | B1             | eg no it is angle ACD that is 70° |  |
|       | Ad                                                 | ditional G     | Guidance                          |  |
|       | Angles may be seen on the diagram                  |                |                                   |  |
|       | No may be implied                                  |                |                                   |  |
|       | eg1 angle <i>ADC</i> is not 70                     |                | B1                                |  |
|       | eg2 angle <i>y</i> is 55                           |                | B1                                |  |
|       | Allow unambiguous indication of angle              | les            |                                   |  |
|       | eg $y$ and $D$ are both 55 so he is wron           | B1             |                                   |  |
|       | No and angle $ADC = 55^{\circ}$                    | B1             |                                   |  |
| 20(c) | y is not 70 so no                                  | B1             |                                   |  |
|       | No, neither angle is correct                       | B1             |                                   |  |
|       | No, he thinks <i>AB</i> and <i>DC</i> are parallel | B1             |                                   |  |
|       | No, he's used alternate angles                     | B1             |                                   |  |
|       | It should say alternate angles (no in              | B1             |                                   |  |
|       | He has made mistakes                               | B0             |                                   |  |
|       | He used the alternate segment theore               | ectly B1       |                                   |  |
|       | Ignore irrelevant working but do not ig            | prrect working |                                   |  |
|       | eg No it is angle ACD that is 70° and              | s 65 B0        |                                   |  |
|       | Responses saying he is correct                     |                | B0                                |  |

| Q  | Answer                                                                                                                                                    | Mark  | Comments                                                                                                                                             |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | Alternative method 1                                                                                                                                      |       |                                                                                                                                                      |  |  |  |
|    | 560 ÷ 500 or 1.12                                                                                                                                         | M1    | ое                                                                                                                                                   |  |  |  |
|    | <sup>3</sup> √their 1.12 or [1.038, 1.0385]                                                                                                               |       | may be implied                                                                                                                                       |  |  |  |
|    | or<br>[3.8, 3.85]                                                                                                                                         | M1dep | eg $\frac{r}{100}$ = [0.038, 0.0385]                                                                                                                 |  |  |  |
|    | 3.9                                                                                                                                                       | A1    |                                                                                                                                                      |  |  |  |
|    | Alternative method 2                                                                                                                                      |       |                                                                                                                                                      |  |  |  |
| 21 | Trial of the form $500 \times x^3$ with<br>$1 < x \le 1.1$<br>and<br>correct evaluation                                                                   | M1    | allow correct evaluation truncated or<br>rounded to nearest integer or better<br>allow working year by year<br>value of <i>x</i> used must be seen   |  |  |  |
|    | Two trials of the form $500 \times x^3$ each<br>with $1 < x \le 1.1$<br>and<br>correct evaluations, one with<br>answer < 560 and one with<br>answer > 560 | M1dep | allow correct evaluations truncated or<br>rounded to nearest integer or better<br>allow working year by year<br>values of <i>x</i> used must be seen |  |  |  |
|    | 3.9                                                                                                                                                       | A1    |                                                                                                                                                      |  |  |  |

## Question 21 continues on the next page

|            | Additional Guidance                                                                                                         |                                                 |     |        |             |  |        |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|--------|-------------|--|--------|--|
|            | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |                                                 |     |        |             |  |        |  |
|            | 1.01                                                                                                                        | 515.1505                                        |     | 1.0385 | 560.0019083 |  |        |  |
|            | 1.02                                                                                                                        | 530.604                                         |     | 1.039  | 560.8111595 |  |        |  |
|            | 1.03                                                                                                                        | 546.3635                                        |     | 1.04   | 562.432     |  |        |  |
|            | 1.038                                                                                                                       | 559.193436                                      |     | 1.05   | 578.8125    |  |        |  |
|            |                                                                                                                             |                                                 |     | 1.06   | 595.508     |  |        |  |
|            |                                                                                                                             |                                                 |     | 1.07   | 612.5215    |  |        |  |
|            |                                                                                                                             |                                                 |     | 1.08   | 629.856     |  |        |  |
|            |                                                                                                                             |                                                 |     | 1.09   | 647.5145    |  |        |  |
|            |                                                                                                                             |                                                 |     | 1.1    | 665.5       |  |        |  |
| 21<br>cont | eg of accepted values<br>For 578.8125 allow 578, 579, 578.8, 578.81, 578.812, 578.813                                       |                                                 |     |        |             |  |        |  |
|            | Alt 2 exampl<br>(allow interma<br>also allow if g                                                                           |                                                 |     |        |             |  |        |  |
|            | 500 × 1.035 :                                                                                                               |                                                 |     |        |             |  |        |  |
|            | 517.5 × 1.03                                                                                                                |                                                 |     |        |             |  |        |  |
|            | $535.61 \times 1.035 = 554.35635$                                                                                           |                                                 |     |        |             |  |        |  |
|            |                                                                                                                             | Incorrect trials and evaluations can be ignored |     |        |             |  |        |  |
|            | 3.9 from incorrect working<br>eg 560 - 500 = 60 $\sqrt[3]{60} = 3.9$                                                        |                                                 |     |        |             |  | ΜΟΜΟΑΟ |  |
|            | Wrong answer (eg 4) with no correct method seen                                                                             |                                                 |     |        |             |  | MOMOAO |  |
|            | Apply the scheme that favours the student                                                                                   |                                                 |     |        |             |  |        |  |
|            | eg 500 × 1.038 <sup>3</sup> scores M1M1 using Alt 1                                                                         |                                                 |     |        |             |  |        |  |
|            | $\frac{560-500}{500}$ w                                                                                                     | ith no further cor                              | rec | t work |             |  | МОМО   |  |

| Q     | Answer                                                                 | Mark | Comments                                                                       |      |
|-------|------------------------------------------------------------------------|------|--------------------------------------------------------------------------------|------|
|       | (x <sub>2</sub> =) 4.1(0)                                              | B1   |                                                                                |      |
|       | (x <sub>3</sub> =) [4.176, 4.178] or 4.18                              | B1ft | ft their 4.1(0) rounded to at least 2 dp<br>SC1 $x_2 = [4.176, 4.178]$ or 4.18 |      |
|       | Additional Guidance                                                    |      |                                                                                |      |
| 22(a) | Allow second B1 for $x_3 = 4.2$ with acceptable answer seen in working |      |                                                                                |      |
|       | <i>x</i> <sub>2</sub> = <b>7</b> .8                                    |      |                                                                                | B0   |
|       | $x_3 = 6.59$                                                           |      |                                                                                | B1ft |
|       | SC1 is for using $x_0 = 4$                                             |      |                                                                                |      |

| Q     | Answer                                | Mark | Comments                    |  |
|-------|---------------------------------------|------|-----------------------------|--|
|       | 4.25 < value                          | B1   | ignore any iteration number |  |
| 22(b) | Additional Guidance                   |      |                             |  |
|       | Ignore other values if B1 response se | en   |                             |  |

| Q  | Answer                                                                                                         | Mark | Comments                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\frac{3}{8}$ (x) $\frac{2}{7}$ or $\frac{6}{56}$ or $\frac{3}{28}$                                            | M1   | oe fraction, decimal or percentage<br>allow $\frac{2}{7}$ to be [0.285, 0.286]<br>or [28.5, 28.6]%<br>allow $\frac{6}{56}$ to be [0.107, 0.107143]<br>or [10.7, 10.7143]%<br>may be seen on a tree diagram<br>allow 6 out of 56                                                                           |
| 23 | $\frac{1}{7} (\times) \frac{1}{4} (\times 2)$ or $\frac{1}{28} (\times 2)$ or $\frac{2}{28}$ or $\frac{1}{14}$ | M1   | oe fraction, decimal or percentage<br>allow $\frac{1}{7}$ to be [0.142, 0.143]<br>or [14.2, 14.3]%<br>allow $\frac{1}{28}$ to be [0.035, 0.036]<br>or [3.5, 3.6]%<br>allow $\frac{2}{28}$ to be [0.071, 0.07143]<br>or [7.1, 7.143]%<br>may be seen on a tree diagram<br>allow 1 out of 28 or 2 out of 28 |
|    | $\frac{6}{56}$ and $\frac{2}{28}$                                                                              | A1   | oe fractions, decimals or percentages allow 6 out of 56 and 2 out of 28                                                                                                                                                                                                                                   |
|    | Probabilities in comparable form<br>and<br>Option 1                                                            | A1ft | ft their $\frac{6}{56}$ and their $\frac{2}{28}$ with M2A0<br>correct comparisons include<br>$\frac{3}{28}$ and $\frac{2}{28}$ $\frac{6}{56}$ and $\frac{4}{56}$<br>0.107 and 0.071 10.7% and 7.1%<br>6 out of 56 and 4 out of 56                                                                         |

# Question 23 continues on the next page

|            | Additional Guidance                                                                                                         |          |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
|            | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts |          |  |  |  |  |
|            | 3 ways to win in Option 1 and 2 ways to win in Option 2 so Option 1                                                         | M0M0A0A0 |  |  |  |  |
| 23<br>cont | $\frac{3}{8} \times \frac{2}{7} = \frac{6}{56}$ $\frac{1}{7} \times \frac{1}{4} = \frac{1}{28}$                             | M1M1     |  |  |  |  |
|            | $\frac{6}{56}$ and $\frac{2}{56}$ and Option 1                                                                              | A0A1ft   |  |  |  |  |
|            | Assuming replacement can score a maximum of M0M1A0A0                                                                        |          |  |  |  |  |
|            | Choosing Option 1 cannot be implied by inequalities                                                                         |          |  |  |  |  |

| Q  | Answer                                                                                                                                                                      | Mark | Comments                                                                                   |        |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------|--------|--|
|    | 64.5 or 65.5<br>or<br>25 or 35                                                                                                                                              | M1   | allow 65.49 or 34.9<br>implied by 4160.25 or 4290<br>or 8320.5 or 8580.5<br>or 625 or 1225 | .25    |  |
|    | $2 \times \text{their } 65.5^2 - \text{their } 25^2$<br>or $2 \times 4290.25 - 625$<br>or $8580.5 - 625$                                                                    | M1   | their 65.5 must be (65, 66]<br>their 25 must be [20, 30)                                   |        |  |
|    | 65.5 and 25 and 7955.5                                                                                                                                                      | A1   |                                                                                            |        |  |
| 24 | Additional Guidance                                                                                                                                                         |      |                                                                                            |        |  |
|    | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts                                                 |      |                                                                                            |        |  |
|    | If multiple attempts are seen and one is fully correct, the correct one must<br>be unambiguously selected (eg ticked or circled) to award A1 if the answer<br>line is blank |      |                                                                                            |        |  |
|    | Note that M0M1A0 is possible                                                                                                                                                |      |                                                                                            |        |  |
|    | eg $2 \times 66^2 - 21^2$                                                                                                                                                   |      |                                                                                            | M0M1A0 |  |
|    | Condone eg 65.50 for 65.5                                                                                                                                                   |      |                                                                                            |        |  |

| Q  | Answer                                                                                                                                                                                                                                                                              | Mark | Comments                                                                                                                                                                                    |                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|    | $\frac{(x-5)(x+2)}{(x-2)(x+2)} \text{ and } \frac{(x+5)(x-2)}{(x+2)(x-2)}$                                                                                                                                                                                                          | M1   | $(x-2)(x+2)$ or $x^2-2x+2x$<br>be seen (expansion may be s<br>grid)<br>brackets in any order<br>if the brackets are not shown<br>numerators, expansions mus<br>may be seen as a single frac | seen in a<br>for the<br>t be correct |
|    | $x^{2}-5x+2x-10 \text{ or } x^{2}-3x-10$<br>or<br>$x^{2}+5x-2x-10 \text{ or } x^{2}+3x-10$                                                                                                                                                                                          | M1   | correct expansion of $(x - 5)(x + 2)$<br>or $(x + 5)(x - 2)$<br>ignore denominators<br>may be seen in a grid<br>implied by $2x^2$ - 20 if no errors seen in<br>expansions                   |                                      |
|    | M2 seen with no errors<br>and $\frac{2x^2 - 20}{x^2 - 4}$                                                                                                                                                                                                                           | A1   | allow M2 seen with no errors<br>and $a = 2$ $b = 20$                                                                                                                                        |                                      |
| 25 | Additional Guidance                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                                             |                                      |
|    | Missing brackets must be recovered but condone missing closing bracket at<br>the end of a numerator or denominator<br>eg $\frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$<br>2nd M1 is awarded for four correct terms even if subsequently simplified<br>incorrectly |      |                                                                                                                                                                                             | 1st M1                               |
|    | For terms seen in a grid, signs must be correct (allow eg $2x$ for $+ 2x$ )                                                                                                                                                                                                         |      |                                                                                                                                                                                             |                                      |
|    | For 1st M1 allow multiplication signs                                                                                                                                                                                                                                               |      |                                                                                                                                                                                             |                                      |
|    | After M2A1 ignore incorrect values stated eg $a = 2$ $b = -20$                                                                                                                                                                                                                      |      |                                                                                                                                                                                             |                                      |
|    | $\frac{2x^2-20}{x^2-4}$ may come from wrong working or incomplete working                                                                                                                                                                                                           |      |                                                                                                                                                                                             |                                      |
|    | eg $\frac{(x-5)(x+2)}{(x-2)(x+2)}$ + $\frac{(x+5)(x-2)}{(x+2)(x-2)}$                                                                                                                                                                                                                |      |                                                                                                                                                                                             | M1                                   |
|    | $\frac{x^2 - 10 + x^2 - 10}{x^2 - 4} = \frac{2x^2 - 20}{x^2 - 4}$                                                                                                                                                                                                                   |      | MOAO                                                                                                                                                                                        |                                      |

| Q     | Answer | Mark     | Comments |  |
|-------|--------|----------|----------|--|
|       | (0, 2) | B1       |          |  |
| 26(a) | Ac     | ditional | Guidance |  |
|       |        |          |          |  |

| Q     | Answer              | Mark | Comments                  |    |
|-------|---------------------|------|---------------------------|----|
|       | $y = -x^2$          | B1   | oe equation eg $x^2 = -y$ |    |
|       | Additional Guidance |      |                           |    |
| 26(b) | $y = -1x^2 + 0$     |      |                           | B1 |
|       | $y = -(x^2)$        |      |                           | B1 |
|       | $-x^2$              |      |                           | В0 |

| Q     | Answer                                                                            | Mark        | Comments                      |      |
|-------|-----------------------------------------------------------------------------------|-------------|-------------------------------|------|
|       | Translation                                                                       | B1          | allow eg translate(d)         |      |
|       | $ \left(\begin{array}{c} -3\\ 0 \right) $                                         | B1          |                               |      |
|       | Ad                                                                                | ditional (  | Guidance                      |      |
|       | Do not accept a vector given as coor<br>'fraction line'                           | dinates or  | with missing brackets or with |      |
|       | Translation from (0, 0)                                                           |             |                               | B1B0 |
|       | Translation horizontally by 3                                                     |             |                               | B1B0 |
| 26(c) | Translate 3 to the left and 3 down                                                |             |                               | B1B0 |
|       | Reflect by $\begin{pmatrix} -3\\ 0 \end{pmatrix}$                                 |             |                               | B0B1 |
|       | Giving a combined transformation is                                               | B0B0        |                               |      |
|       | Rotate by $\begin{pmatrix} -3\\0 \end{pmatrix}$ and reflect in the <i>x</i> -axis |             |                               | B0B0 |
|       | Ignore references to movement if ve                                               | ctor is cor | rect                          |      |
|       | eg Move to the right by $\begin{pmatrix} -3\\ 0 \end{pmatrix}$                    |             |                               | B0B1 |