GCSE MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator

Mark scheme

June 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	a ¹⁵	B1	

Question	Answer	Mark	Comments
2	$\frac{26}{70}$	B1	

Question	Answer	Mark	Comments
3	hexagon-based pyramid	B1	

Question	Answer	Mark	Comments
4	$y = \frac{k}{x}$	B1	

Question	Answer	Mark	Commen	ts
	200 written as a product of factors where at least one factor is prime		eg 2 and 100 or 2×10^2 o	r 200 · 5 – 40
			may be on a factor tree of	
		M1	division	n repeated
			allow one strand to be in previous value complete	
			eg 10×20 followed by	
			$5 \times 2 \times 5 \times 6$ implies $5 \times$	2 × 20 for M1
	2 and 2 and 2 and 5 and 5	A1	may be on a factor tree o division	or repeated
-	$2^3 \times 5^2$ or $5^2 \times 2^3$	A1		
	Additional Guidance			
	Allow any number of 1s included as factors up to M1A1 only			
5	M1 may be awarded for correct work this is seen among multiple attempts			
	$1 \times 2^3 \times 5^2$	M1A1A0		
	$2^3.5^2$ or $2^3.5^2$ or 2^35^2 or $2^3,5^2$	M1A1A1		
	2 + 2 + 2 + 5 + 5	M1A1A0		
	$2^3 + 5^2$	M1A1A0		
	$2 \times 2 \times 2 \times 5 \times 5$ and $2^3 \times 5^2$ on answer line			M1A1A0
-	but $2 \times 2 \times 2 \times 5 \times 5 = 2^3 \times 5^2$ on answer line			M1M1A1
	$2^3 \times 5^2 = 10^5$			M1A1A0
	$2^3 \times 5^2 = 200$			M1A1A1
	8×25 with no prime factorisation			M0A0A0

Question	Answer	Mark	Commer	nts
6	$\frac{7}{5}$ or $1\frac{2}{5}$	B2	B1 28 and 20 or $2\frac{1}{3}$ and $1\frac{2}{3}$ oe mixed n fractions with common d or correct unsimplified fract number eg $\frac{14}{10}$ or $1\frac{8}{20}$ or correct simplification of a at least one of the values the other is not 12 SC1 $\frac{5}{7}$	lenominator tion or mixed 0 a fraction where
	Additional Guidance			
	Allow a fractional numerator and/or denominator in a correct fraction eg $\frac{2\frac{1}{3}}{1\frac{8}{12}}$ or $\frac{\frac{28}{12}}{\frac{5}{3}}$			В1
	$\frac{2.4}{1.8}$ simplified to $\frac{4}{3}$			B0
	Ignore an attempt to convert $\frac{7}{5}$ to an improper fraction			
	eg $\frac{7}{5} = 1\frac{2}{7}$ on the answer line			B2
	7:5 with no working worthy of B1			В0

Question	Answer	Mark	Comments
	$(\sqrt{97} =) \sqrt{100}$ or 10 or $(2.014^3 =) 2^3$ or 8 or $(0.49 =) 0.5$ or $\frac{1}{2}$	M1	
7	$(\sqrt{97} =) \sqrt{100}$ or 10 and $(2.014^3 =) 2^3$ or 8 and $(0.49 =) 0.5$ or $\frac{1}{2}$	M1	$\frac{10+8}{0.5}$ or $\frac{18}{0.5}$ scores M2
	36	A1	

Question	Answer	Mark	Commen	ts
	5x - 3x or $2xor 3x - 5x or -2xor15 - 6$ or $9or 6 - 15 or -9$	M1	may be seen as an anno given inequality eg – 6 written under + 1	
	2x > 9 or $-9 > -2x$ or 4.5 or $\frac{9}{2}$ or $4\frac{1}{2}$	A1	implied by correct answe	ər
8(a)	$x > 4.5$ or $x > \frac{9}{2}$ or $x > 4\frac{1}{2}$	A1ft	ft solution of inequality of the form 2x > k where k is a number or $m > -2x$ where m is a number or $ax > 9$ where a is an integer not equal to 1 or $-9 > bx$ where b is an integer not equal to 1	
	Additional Guidance			
	In all cases accept the inequality written correctly in reverse order For example, for $2x > 9$ accept $9 < 2x$			
	4.5 < <i>x</i>			M1A1A1
	2x > 21, x > 10.5			M1A0A1ft
	8 <i>x</i> > 9, <i>x</i> > 1.125			M1A0A1ft
	Do not allow a correct answer in working followed by an incorrect answer on the answer line			
	eg $x > \frac{9}{2}$ in working with 4.5 on the answer line			M1A1A0
	Do not allow the correct answer with another answer eg $x > 4.5$ and $x = 4.5$ on the answer line			M1A1A0

Question	Answer	Mark	Commen	its
	$2 \leq x < 5$ or $5 > x \geq 2$	B2	any letter B1 $2 \le x$ or $x \ge 2$ or $x < 5$ or $5 > x$ SC1 $2 < x \le 5$ or $5 \ge x > 2$	
	Ade			
	$2 \leq x$ and $x < 5$			B1
8(b)	$2 \leq x$ and $x > 5$			B1
	$2 \leq x > 5$			B1
	$2 \leq x \leq 5$			B1
	$2 \leq x \leq 4$			B1
	2 < <i>x</i> < 5			B1
	$2 \ge x > 5$			B0
	2 ≤ 5			B0

Question	Answer	Mark	Comments	
9	(4, 16)	B2	may be on diagram B1 one correct coordinate SC1 (16, 4)	
	Additional Guidance			
	B1 may be scored from 4 at the vertex vertically below Q or from 16 at the vertex vertically above <i>P</i> if not contradicted by the answer			

Question	Answer	Mark	Commen	its
	2 × 10 ³ or 7 × 10 ⁴ or 140 000 000	M1	oe correct value not in steed $eg 14 \times 10^7$	tandard form
	1.4 × 10 ⁸	A1 SC1 Correctly converts a Number with at least four standard form		-
10(a)	Additional Guidance			
	Condone extra zeros on 1.4 eg 1.40 000 000 \times 10 ⁸			M1A1
	1.4 × 10 ⁸ from 1400 000 000			M0A0
	2×10^3 is implied by $(2 \times 7) \times (10^3 \times 10^a)$ 7×10^4 is implied by $(2 \times 7) \times (10^b \times 10^4)$			M1
	1 400 000 000 converted to 1.4×10^9			SC1

Question	Answer	Mark	Commen	ts
10(b)	180 or 0.3 or $(1.8 \div 3 =) 0.6$ or $(10^2 \div 10^{-1} =) 10^3$ or calculation which would have the outcome 600 or correct value not given as an ordinary number	M1	eg 1800÷3 eg 6×10 ²	
	600	A1		
	Additional Guidance			
	$1800 \div 0.3 = 600$ scores M1 only, as 600 comes from incorrect working M1A0			M1A0
	$1800 \div 30 = 600$ scores zero, as 600 comes from incorrect working M0A0			

Question	Answer	Mark	Commer	nts
	$62 \div 2$ or 62×0.5 or 31	M1	oe eg 62÷60×30	
	their 31 – 25 or 6	M1	their 31 must be > 25	
	their 6 × 3 or 18		dep on 2nd M1	
	or	M1dep		
11	their 6×4 or 24			
	49	A1		
	Additional Guidance			
	49 from correct working, but a different answer given			M3A0

Question	Answer	Mark	Comments		
	Alternative method 1				
	sin 30 = $\frac{x}{10}$ or (x =) 10 sin 30	M1	oe eg $\frac{x}{\sin 30} = \frac{10}{\sin 90}$		
	sin 30 = 0.5	M1	oe may be seen in a table $0.5 = \frac{x}{10}$ oe scores M1M1		
12	5	A1			
12	Alternative method 2				
	Correct trigonometric method to show that the length of the missing side is $5\sqrt{3}$	M1	oe		
	$\sqrt{(5\sqrt{3})^2 + x^2} = 10$	M1dep	ое		
	5	A1			
	Additional Guidance				
	Accept use of cos 60 instead of sin 30				

Question	Answer	Mark	Commen	ts
13	5 ÷ 6 attempted with at least 0.8 shown and a carry of any integer from 1 to 7 or 0.16×5 or $1.6 \div 2$ or 1 - 0.16	M1	oe calculation involving a correct recurring decimal which would give an outcome of 0.83	
	0.83	A1	3s immediately	
	Additional Guidance			
	Condone other recurring symbols or repeated dots			
	eg 0.83 ^r or 0.83…			M1A1

Question	Answer	Mark	Comments
14	$\frac{7}{x}$	B1	

Question	Answer	Mark	Comments
15	$x^{2} + 3ax + ax + 3a^{2} (\equiv x^{2} + bx + 75)$ or $x^{2} + 4ax + 3a^{2} (\equiv x^{2} + bx + 75)$ or $3ax + ax + 3a^{2} \equiv bx + 75$ or $4ax + 3a^{2} \equiv bx + 75$ or $3a^{2} = 75$	M1	
	a = 5 and/or $a = -5$	A1	implied by $(x + 5)(x + 15)$ or $(x - 5)(x - 15)$ implied by answer 20 and/or –20
	20 and –20	A1	oe ±20

Question	Answer	Mark	Comments
16(a)	Vertical line from 21 to [15, 17] or 16	M1	implied by correct point marked on curve or vertical axis
	24	A1	SC1 23 or 25

Question	Answer	Mark	Comments	
	(Median =) 22	B1	in working or in box plot	
	(LQ =) 18 and (UQ =) 24	B1	in working or in box plot	
16(b)	Rectangular box with median line and whiskers to 3 and 28	B1		
16(D)	Additional Guidance			
-	Median and quartiles may be seen on cumulative frequency diagram			
	If the values for the median and/or the working but incorrect in the box plot a	- •		

找名校导师,用小草线上辅导(微信小程序同名)

Question	Answer	Mark	Comments
17	$\begin{pmatrix} 5\\-8 \end{pmatrix}$	B1	

Question	Answer	Mark	Commer	nts	
	Correct explanation	B1	eg 35 is more than 17 + 13		
	Additional Guidance				
	It is more than 30			B1	
	AB cannot be more than $AC + BC$ 18(a) $AC + BC$ only add up to 30				
18(a)					
	The triangle inequality		B1		
	17 + 13 is only 30	B1			
	17 + 13 is 30			B0	
	It would be too long				

Question	Answer	Mark	Commen	its
	Correct explanation	B1	eg (it should be) $\frac{31}{\sin x}$	
	Ade	Guidance		
10(1)	x and 31 should be swapped			B1
18(b)	She has used 31 as an angle			B1
	She has used <i>x</i> as a length			B1
	It should be $\frac{\sin x}{31} \left(=\frac{\sin 72}{54}\right)$			B1

Question	Answer	Mark	Comments	
	0.1 on Fail for First check	B1	oe fraction, decimal or percentage	
19(a)	0.01 on Fail and 0.99 on Pass for Second check	B1	oe fraction, decimal or percentage	
	Additional Guidance			
	Ignore any extra branches drawn			

Question	Answer	Mark	Comme	nts	
	Alternative method 1				
	0.9 × their 0.01 or 0.009	M1	oe eg $\frac{9}{10} \times \frac{1}{100} = \frac{1}{100}$	9 000	
	their 0.009 + their 0.1	M1dep	oe their 0.1 must be > 0 a	nd < 1	
	0.109	A1ft	oe fraction, decimal or ft their tree diagram if a are > 0 and < 1		
19(b)	Alternative method 2				
·	0.9 × their 0.99 or 0.891	M1	oe ed — x — = -	391 000	
	1 – their 0.891	M1dep	ое		
	0.109	A1ft	oe fraction, decimal or percentage ft their tree diagram if all probabilities are > 0 and < 1		
		Additional G	uidance		
	Answer 0.109%			M2A0	

Question	Answer	Mark	Comments
20	g/cm ³	B1	

Question	Answer	Mark	Comments	
	Alternative method 1: using the left hand values			
	(<i>a</i> =) 6 ÷ 2 or (<i>a</i> =) 3	M1	implied by $3n^2$	
	$3 \times \text{their } 3 + b = 7$ or $b = -2$	M1dep	oe $3n^2 - 2n \dots$ implies M1M1	
	3 + their -2 + c = 10 or $c = 9$		oe	
	$3n^2 - 2n + 9$	A1	SC1 30 and 49 as the next two terms	
21	Alternative method 2: subtracting	3 <i>n</i> ² to get	a linear sequence	
	(<i>a</i> =) 6 ÷ 2 or (<i>a</i> =) 3	M1	implied by $3n^2$	
	10 – their 3 × 1 ² or 7 and 17 – their 3 × 2 ² or 5 or $b = -2$	M1dep	oe using any two terms 3 <i>n</i> ² – 2 <i>n</i> … implies M1M1	
	(their 5 – their 7) (× 1) + $c = 7$ or $-2 (× 1) + c = 7$ or $c = 9$	M1dep	oe equation using any term	
	$3n^2 - 2n + 9$	A1	SC1 30 and 49 as the next two terms	

Mark scheme and Additional Guidance continues on the next page

	Alternative method 3: simultaneou	s equatio	ns	
	Alternative method 3: simultaneou Simultaneous equations leading to a fully correct method to work out a or b or a = 3 or b = -2	M1	eg $a + b + c = 10$ and $4a + 2b + c = 17$ and $9a + 3b + c = 30$ and 3a + b = 7 and $5a + b = 13$ and 2a = 6	
21			and $(a =) 3$ implied by $3n^2$ or $-2n$	
	Substitutes for a or b in one or two of the simultaneous equations with fully correct method to work out the other value	M1dep	eg 3 × their 3 + b = 7 or $b = -2$ $3n^2 - 2n$ implies M1M1	
	Substitutes for $a \& b$ to work out c or $c = 9$	M1dep	any term eg $3 - 2 + c = 10$	
cont	$3n^2 - 2n + 9$	A1	SC1 30 and 49 as the next two terms	
	Alternative method 4: Using the '01	th' term to	o get <i>c</i>	
	(<i>a</i> =) 6 ÷ 2 or (<i>a</i> =) 3	M1	implied by $3n^2$	
	$0n^2 + 0n + c = 9$ or $c = 9$	M1		
	their $3 + b +$ their $9 = 10$ or $b = -2$	M1dep	oe dep on M2	
	$3n^2 - 2n + 9$	A1	SC1 30 and 49 as the next two terms	
	Additional Guidance			
		In all cases <i>a</i> , <i>b</i> and <i>c</i> refer to the general expression for the <i>n</i> th term of a quadratic sequence $an^2 + bn + c$		
	÷	-	ession for the <i>n</i> th term	
	÷	C		

Question	Answer	Mark	Commen	ts
22	1 24 25	В3	oe mixed number B2 $\frac{49}{25}$ B1 $\left(\frac{7}{5}\right)^2$ or $\frac{1}{\left(\frac{5}{7}\right)^2}$ or or $\frac{1}{\frac{25}{49}}$ or $\left(\frac{25}{49}\right)^{-1}$ or	
	Additional Guidance		Buidance	
	For B2 or B1 allow equivalent fractions or decimals			
	eg 1.96 for $\frac{49}{25}$			B2

Question	Answer	Mark	Comme	nts
	$y\sqrt{x+1} = 1$ or $\sqrt{x+1} = \frac{1}{y}$ or $y^{2} = \frac{1}{x+1}$	M1		
23	$y^{2}(x+1) = 1$ or $y^{2}x + y^{2} = 1$ or $y^{2}x = 1 - y^{2}$ or $x + 1 = \frac{1}{y^{2}}$ or $\frac{1}{y^{2}} - 1$ or $\frac{1 - y^{2}}{y^{2}}$	M1dep		
	$x = \frac{1}{y^2} - 1$ or $x = \frac{1 - y^2}{y^2}$	A1	oe in the form <i>x</i> =	
	Ado	litional G	uidance	
	Correct answer in working repeated of			
	eg $x = \frac{1}{y^2} - 1$ seen in working with	answer - J	$\frac{1}{v^2} - 1$	M1M1A1
	Allow $\left(\frac{1}{y}\right)^2$ for $\frac{1}{y^2}$ throughout	Allow $\left(\frac{1}{y}\right)^2$ for $\frac{1}{y^2}$ throughout		
	Allow 1 ² for 1 throughout			

Question	Answer	Mark	Comments		
	Alternative method 1: eliminates <i>d</i>				
	4c + d = 7		oe equations		
	and	M1			
	10c + d = 22				
	(10-4)c = 22-7		oe correct equation in <i>c</i>		
	or	M1dep	eg $10c + 7 - 4c = 22$		
	6c = 15 or $c = 2.5$				
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c		
	Alternative method 2: eliminates <i>c</i>				
	4c + d = 7				
24(a)	and	M1			
()	10c + d = 22				
	(10-4)d = 70-88		oe correct equation in <i>d</i>		
	or $6d = -18$ or $d = -3$	M1dep	$eg \ 4\left(\frac{22-d}{10}\right) + d = 7$		
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c		
	Alternative method 3: works out th through the points	e differer	nce or the equation of the function		
	(difference =) $\frac{22-7}{10-4}$ or 2.5	M1	(gradient =) $\frac{22-7}{10-4}$ or $(m =) 2.5$		
	<i>c</i> = 2.5	M1dep	oe fraction or mixed number		
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c		
Question	Answer	Mark	Comments		

Question	Answer	Mark	Comments
24(b)	$\frac{2x-1}{2}$	B1	

Question	Answer	Mark	Comme	nts
	Alternative method 1	·		
	$(\sqrt{150} =) \sqrt{25} \sqrt{6} \text{ or } 5\sqrt{6}$		numerator allow $\sqrt{2}\sqrt{3}$	$\overline{3}$ for $\sqrt{6}$
	or	M1		
	$(\sqrt{2} \times \sqrt{3} =) \sqrt{6}$		denominator	
	$\frac{\sqrt{25}\sqrt{6} - \sqrt{6}}{\sqrt{6}} \text{ or } \frac{5\sqrt{6} - \sqrt{6}}{\sqrt{6}}$ or $\frac{4\sqrt{6}}{\sqrt{6}}$	M1dep	allow consistent use of	f $\sqrt{2}\sqrt{3}$ for $\sqrt{6}$
·	4 with M1M1 awarded	A1		
	Alternative method 2			
	$\sqrt{6} (\sqrt{25} - 1)$ or $\sqrt{6} (5 - 1)$		numerator allow $\sqrt{2}\sqrt{3}$	$\overline{3}$ for $\sqrt{6}$
25	or $4\sqrt{6}$	M1		
23	or $(\sqrt{2} \times \sqrt{3} =) \sqrt{6}$		denominator	
	$\frac{\sqrt{6}(\sqrt{25}-1)}{\sqrt{6}} \text{ or } \frac{\sqrt{6}(5-1)}{\sqrt{6}}$	M1dep	allow consistent use of	f $\sqrt{2}\sqrt{3}$ for $\sqrt{6}$
	4 with M1M1 awarded	A1		
	Alternative method 3			
	$\frac{\sqrt{150}-\sqrt{6}}{\sqrt{2}\times\sqrt{3}} \times \frac{\sqrt{6}}{\sqrt{6}}$	M1	allow $\frac{\sqrt{2}\sqrt{3}}{\sqrt{2}\sqrt{3}}$ for $\frac{\sqrt{6}}{\sqrt{6}}$	
	$\frac{\sqrt{900}-6}{6}$	M1dep	oe rationalised	
	4 with M1M1 awarded	A1		
	Ado	ditional G	uidance	
	Condone answer 4 and –6 from use o	of $\sqrt{25} = \pm$	⊧5	M1M1A1

Question	Answer	Mark	Comme	nts	
	Alternative method 1: substitutes	2 <i>f</i> for <i>d</i>			
	$\frac{e-f}{2f-e} = \frac{1}{4}$ or $2f-e = 4(e-f)$	M1	oe equation in e and f		
	6f = 5e		oe with variables colle	cted	
	or	M1dep	eg 1.5 <i>f</i> = 1.25 <i>e</i>		
	$\frac{e}{f} = \frac{6}{5}$		oe with single fraction	s eg $\frac{f}{5} = \frac{e}{6}$	
	6:5	A1	oe ratio		
	Alternative method 2: substitutes	$\frac{d}{2}$ for f			
	$d - e = 4(e - \frac{d}{2})$ or $3d = 5e$	M1	oe equation in d and e		
	6 <i>f</i> = 5 <i>e</i>	M1dep	oe with variables colle	cted	
	or		eg 1.5 <i>f</i> = 1.25 <i>e</i>		
26	$\frac{e}{f} = \frac{6}{5}$		oe with single fraction	s eg $\frac{f}{5} = \frac{e}{6}$	
	6:5	A1	oe ratio		
	Alternative method 3: substitutes $2f$ for d and forms simultaneous equations				
	e - f = 1		oe with rhs in the ratio	01:4	
	and	M1	eg $e-f=2$		
	2f - e = 4		and		
			2f - e = 8		
	<i>f</i> =5		correct solution for one their correct simultane		
	or $e = 6$	M1dep	eg $f = 10$ or $e = 12$ fr equations	-	
	6 : 5	A1	oe ratio		
	Ade	ditional Gu	uidance		
	5 : 6 with no method marks awarded			M0M0A0	

Question	Answer	Mark	Commer	nts
	$5^2 imes \pi$ (÷ 6) or 25π (÷ 6)	M1	oe allow 3.14 or better for <i>រ</i>	au throughout
	$\frac{1}{2} \times 5 \times 5 \times \sin 60$ or $\frac{1}{2} \times 5 \times 2.5 \tan 60$ or $\frac{25}{2} \times \frac{\sqrt{3}}{2}$	M1	oe correct method to work out the area of the triangle or the area of the hexagon implied by 75 sin 60 or 37.5 tan 60 or $\frac{75\sqrt{3}}{2}$ oe	
27	$\frac{25\pi}{6} - \frac{25\sqrt{3}}{4}$	A1	oe eg $\frac{1}{6} \left(25\pi - \frac{75\sqrt{3}}{2} \right)$ implied by correct answe	,
	$\frac{50\pi-75\sqrt{3}}{12}$	A1	oe in correct form eg $\frac{50\pi - 15\sqrt{75}}{12}$	
	Additional Guidance			
	Using Pythagoras to work out the perpendicular height of the triangle may lead to an area of $\frac{5\sqrt{18.75}}{2}$ for the triangle or $15\sqrt{18.75}$ for the area of the hexagon			2nd M1

Question	Answer	Mark	Comments	
28(a)	Correct graph (translated 90° to the right)	B1	mark intention	
	Additional Guidance			
	Condone the graph starting at (90, 1)			
	Ignore the curve outside the domain $0 \le x \le 360$			

Question	Answer	Mark	Comments		
28(b)	Correct graph (translated 1 up)	B1	mark intention		
	Additional Guidance				
	Ignore the curve outside the domain	60			

Question	Answer	Mark	Comments			
28(c)	Correct statement	B1	eg this is $y = -\cos x$ $\cos 0 = 1$ it's upside down it should be the same as $\cos x$			
	Additional Guidance					
	It has been reflected in the <i>x</i> -axis instead of the <i>y</i> -axis			B1		
	It should have been reflected in the <i>y</i> -axis			B1		
	It starts at –1 (instead of 1)			B1		
	180 is above the <i>x</i> -axis			B1		
	Correct curve drawn	B1				
	$\cos(-180) = -1$			B1		
	She has done $-y$ instead of $-x$			B1		
	It can't start as a negative			B1		
	It should go down not up			B0		
	She shouldn't have flipped it			B0		
	Ignore non-contradictory statements alongside a correct statement			B1		

Question	Answer	Mark	Comme	nts			
29	Alternative method 1						
	Rotation, 180°, (about) (–1, 1)	В3	B2 rotation, 180° or rotation (about) (-1, 1) or turn, 180° (about) (-1, 1) B1 rotation or turn, 180° or turn (about) (-1, 1)				
	Alternative method 2						
	Enlargement, scale factor –1 (with centre) (–1, 1)	B3	B2 enlargement, scale factor –1 B1 enlargement (with centre) (–1, 1)				
	Alternative method 3						
	Reflection in (–1, 1)	B3	there are no part marks in this method				
	Additional Guidance						
	Allow <i>B</i> instead of (–1, 1) throughout						
	Compound transformation			B0			