

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment
1	<u>1</u> 80	B1	

Q	Answer	Mark	Comment
2	P(A ∩ B')	B1	

Q	Answer	Mark	Comment
3	15	B1	

Q	Answer	Mark	Comment
4	-5 < <i>x</i> ≤ 1	B1	

Q	Answer	Mark	Comments	
	Alternative method 1			
	10 <i>x</i> – 5	M1	may be seen in a grid	
	their $10x - 6x = 9 + \text{their } 5$		oe eg their $-5 - 9 = 6x$ – their $10x$	
	or		or $4x - 14 = 0$	
	4x = 14 or	M1	collecting two terms in <i>x</i> and two constant terms correctly	
	14 ÷ 4 or 7 ÷ 2			
	$\frac{14}{4}$ or $3\frac{2}{4}$ or $\frac{7}{2}$ or $3\frac{1}{2}$ or 3.5 A1ft		oe ft M1M0 or M0M1 with exactly one error	
5	Alternative method 2			
	$\frac{6x}{5} + \frac{9}{5}$	M1	oe two terms eg $1.2x + 1.8$	
	$2x - \text{their } \frac{6x}{5} = \text{their } \frac{9}{5} + 1$		oe eg -1 – their $\frac{9}{5}$ = their $\frac{6x}{5}$ – $2x$	
	or $\frac{4x}{5} = \frac{14}{5}$	M1	or $\frac{4x}{5} - \frac{14}{5} = 0$	
			collecting two terms in x and two constant terms correctly	
	$\frac{14}{4}$ or $3\frac{2}{4}$ or $\frac{7}{2}$ or $3\frac{1}{2}$ or 3.5	A1ft	oe ft M1M0 or M0M1 with exactly one error	

	Additional Guidance	
	Ignore simplification or conversion if correct answer seen	
-	Correct answer from trial and improvement	M1M1A1
	Correct equation with terms collected or division with no or incorrect answer	M1M1A0
	Embedded 3.5 with no or incorrect answer	M1M1A0
-	10x - 5 = 6x + 9	M1
	10x - 6x = 9 - 5	MO
	x = 1 (exactly one error in line 2)	A1ft
-	7x - 5 = 6x + 9	MO
	7x - 6x = 9 + 5	M1
	x = 14 (exactly one error in line 1)	A1ft
	10x - 5 = 6x + 9	M1
	10x + 6x = 9 - 5	MO
5 cont	$x = \frac{4}{16}$ (two errors in line 2)	A0ft
	10x - 1 = 6x + 9	MO
	10x - 6x = 9 + 1	M1
	x = 3 (exactly one error in line 1 but answer does not ft)	A0ft
	7x - 6 = 6x + 9	MO
	7x - 6x = 9 + 6	M1
	x = 15 (two errors in line 1)	A0ft
	10x + 4 = 6x + 9	MO
	10x - 6x = 9 + 4	MO
	x = 3.25 (neither M mark scored)	A0ft
	10x - 5 = 30x + 45	M1M0A0ft
	Any ft answer must be rounded or truncated to 1 dp or better	
	The last two marks can be implied without the collection of terms seen	
	eg $10x - 1 = 6x + 9$ and $x = 2.5$	M0M1A1ft
	Collecting terms before the bracket has been expanded	M0M0A0ft

Q	Answer	Mark	Comments		
	125 and 17		together in any order		
	or 5 ³ and 17		eg 125×17 or 17×5^3 or	5, 5, 5, 17	
	or 5 and 5 and 5 and 17		or 2125 ÷ 17 = 125 or 212	5 ÷ 125 = 17	
			B1 at least three of 8, 27, 6 343, 512, 729, 1000, 1331, 1 etc (allow 2 ³ , 3 ³ , 4 ³ etc)		
			or		
		B2	all four of 11, 13, 17, 19 (ig numbers not between 10 and		
			or		
			(cube number > 1) × (prime between 10 and 20)	number	
			or		
			2125 ÷ (cube number > 1)		
			or		
			2125 ÷ (prime number between 20)	een 10 and	
	Ad	ditional G	Buidance		
6	B1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	B2 responses may be seen on a fact	B2 responses may be seen on a factor tree			
	B1 for three cube numbers given in in	1 for three cube numbers given in index form – evaluations can be ignored			
	eg 4 ³ 5 ³ 6 ³ scores B1 with no evalu	ations or	with incorrect evaluations		
	B1 for multiplications or divisions – e	valuation	can be ignored		
	eg1 $2^3 \times 13$ scores B1 with no evaluation or evaluated incorrectly				
	eg2 2125 ÷ 27 scores B1 with no eva				
	eg3 2125 ÷ 11 scores B1 with no evaluation or evaluated incorrectly				
	125 and 17 seen in multiple attempts is B2 if 2125 included				
	eg $125 \times 17 = 2125$ or $2125 \div 17 = 125$ or $2125 \div 125 = 17$ seen amongst multiple attempts			B2	
	125 and 17 seen in multiple attempts is B1 if 2125 not included eg 125 × 17 seen amongst multiple attempts			B1	
	11 13 15 17 19 does not score B1 unless 11 13 17 19 selected				
	Incomplete list eg 11 13 19 does not score B1				
	incomplete list eg 11 13 19 does no	JI SCUIE D			

Q	Answer	Mark	Comments	
	Alternative method 1 Words per minute or words per second			
	416 ÷ 8 or 52	M1	oe eg 416 ÷ (8×60) or 416 ÷ 480 or $\frac{13}{15}$ or $[0.86, 0.87]$ or 0.9	
	1534 ÷ their 52 or (1534 – 416) ÷ their 52 + 8 or 29.5	M1dep	oe eg 1534 ÷ their [0.86, 0.87] or (1534 – 416) ÷ their [0.86, 0.87] + 8 × 60 or 1770	
	29 minutes 30 seconds A1 SC2 29 minutes 50 seconds or 29 minutes 5 seconds			
7	Alternative method 2 Minutes per word or seconds per word			
	$8 \div 416$ or $\frac{1}{52}$ or [0.019, 0.019231] or 0.02	M1	oe eg 8 × 60 ÷ 416 or 480 ÷ 416 or $\frac{15}{13}$ or [1.15, 1.154] or 1.2	
	1534 × their [0.019, 0.019231] or (1534 – 416) × their [0.019, 0.019231] + 8 or 29.5	M1dep	oe eg 1534 × their [1.15, 1.154] or (1534 – 416) × their [1.15, 1.154] + 8 × 60 or 1770	
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3 Essay word	s ÷ report	words	
7 cont	1534 ÷ 416 or $\frac{59}{16}$ or [3.68, 3.69] or 3.7 or (1534 – 416) ÷ 416 or [2.68, 2.69] or 2.7	M1	oe	
	8 × their [3.68, 3.69] or 8 × their [2.68, 2.69] + 8 or 29.5	M1dep	oe eg $8 \times 60 \times$ their [3.68, 3 or $8 \times 60 \times$ their [2.68, 2.69] + or 1770	-
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds	S
	Additional Guidance			
,	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	Answer 29.5 minutes 1770 seconds			M1M1A0
	Build-up method must be a fully correct method that would lead to 29.5			
	If working with report words ÷ essay words apply the principles of Alt 3			

Q	Answer	Mark	Comments	
	Alternative method 1			
	$90 \times 5 \text{ or } 450$ or $\frac{72 + 83 + 88 + 97 + x}{5}$ or $\frac{340 + x}{5}$	M1	oe any letter or symbol	
	90 × 5 - 72 - 83 - 88 - 97 or 90 × 5 - 340 or 72 + 83 + 88 + 97 + x = 90 × 5 or 340 + x = 90 × 5	M1dep	oe any letter or symbol equations must have fraction eliminated	
	110	A1		
8	Alternative method 2			
	Trial of any value with mean correctly evaluated	M1	also allow if given to the next or previous integer eg1 trial of 100 $\frac{72+83+88+97+100}{5} = 88$ eg2 trial of 78 $\frac{340+78}{5} = 83 \text{ (or 84 or 83.6)}$	
			ignore trials with mean not evaluated or incorrectly evaluated	
	Trial of 110 with mean evaluated to 90	M1dep	eg $\frac{72+83+88+97+110}{5}$ = 90 this mark implies M1M1	
	110	A1		

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3			
	$\frac{72+83+88+97}{4}$ or $\frac{340}{4}$ or 85	M1	oe	
	their $85 + 5 \times (90 - \text{their } 85)$ or their $85 + 5 \times 5$	M1dep	oe 90 + 4 × (90 – their 85)	
	or their 85 + 25			
	110	A1		
	Alternative method 4			
	$\frac{72+83+88+97}{5}$ or $\frac{340}{5}$ or 68	M1	oe	
	5 × (90 – their 68) or 5 × 22	M1dep	oe	
	110	A1		
	Alternative method 5			
8 cont	(90 – 72) + (90 – 83) + (90 – 88) + (90 – 97)	M1	oe eg (72 – 90) + (83 – 90) + (97 – 90)	+ (88 – 90)
	or		or 90 × 4 – 72 – 83 – 88 – 97	
	18 + 7 + 2 – 7 or 20		or -18 - 7 - 2 + 7 or -20	
	90 + their 20	M1dep	oe eg 90 – their –20	
	110	A1		
	Additional Guidance			
	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	Embedded 110 scores M1M1A0 using Alt 2 (even if a different answer is given)			
	Condone eg Alt 3 72 + 83 + 88 + 97 ÷ 4			M1
	No further marks unless recovered			
	Alt 5 1st M1 Subtractions must be consistent			
	Condone 110% for 110			

Q	Answer	Mark	Comments		
	$\frac{33}{120}$ or $\frac{11}{40}$ or 0.275 or 27.5%	oe fraction, decimal or percentage			
	Add	ditional C	Guidance		
	Correct answer seen with an answer	of 33	В0		
	Ignore simplification or conversion if	correct ar	swer seen		
	eg1 $\frac{33}{120}$ seen Answer $\frac{3}{10}$		B1		
	eg2 0.275 seen Answer 0.28		B1		
	eg3 $\frac{11}{40}$ seen Answer 27.5				
	Ignore words if correct answer seen				
9(a)	eg1 $\frac{33}{120}$ seen Answer 11 out of 40	B1			
	eg2 $\frac{33}{120}$, unlikely		B1		
	Answer given as ratio (even if correct	also seen)			
	eg 33:120		B0		
	Answer only in words eg 33 out of 12	0	B0		
	Only 27.5 (without %)		В0		
	Only 27% or 28%				
	Only 0.27 or 0.28		В0		
	ВО				

Q	Answer	Mark	Comments		
	$\frac{6}{120} \times 500$ or $[4.16, 4.17] \times 6$ or $[24.96, 25.02]$ or 4.2×6 or 25.2 or $25:500$ or $\frac{25}{500}$	M1	oe eg 0.05 × 500 or 500 ÷	20	
	25	A1			
	Additional Guidance				
	Working and value may be seen by ta				
9(b)	24 + 1, Answer 25	M1A1			
	480 = 24, Answer 25	M1A1			
	Embedded but not selected as answe	M1A0			
	Working for Not answered or Answered but sale not made is not choice eg ignore 137.5 and 337.5 seen				
	25 followed by answer 19			M1A0	
	If rounded or truncated values are us 25				
	eg1 500 ÷ 120 = 4.16, 4.16 × 6 Answer 25 (may have kept full value on calculator)			M1 A1	
	eg2 500 ÷ 120 = 4.16, 4.16 × 6 = 24 Answer 25 (comes from further			M1 A0	

Answer	Mark	Comments	
80 × 0.9 or 72		oe eg 80 × (1 – 0.1)	
or		or 25 + 25 × 0.2	
25 × 1.2 or 30		or 25 + 5	
or	M1	implied by 102 or 3 or -3	
No and correct valid amount(s)			
	A1		
Ade	ditional G	Guidance	
If neither box is ticked, No may be implied			
eg neither box is ticked and Ellie paid		M1A1	
Working and values may be seen by	the table		
No and 105 with M1 not seen			M0A0
No and 8 with M1 not seen			M0A0
No and 5 with M1 not seen			M0A0
Condone No and 8 and 5 with arithmetic error(s) seen			
eg 72 so 8 less 30 so 5 more		M1A1	
105 and 103 No (arithmetic error in	g Ellie's total)		
Do not condone No and 8 and 5 with	s error(s) seen		
eg $80 - 8 = 72$ $25 - 5 = 20$ (proce	should be 25 + 5)	M1A0	
105 and 92 No			
	80 × 0.9 or 72 or 25 × 1.2 or 30 or 80 × 0.1 and 25 × 0.2 or 8 and 5 or —8 and 5 No and correct valid amount(s) Add If neither box is ticked, No may be imeg neither box is ticked and Ellie paid Working and values may be seen by No and 105 with M1 not seen No and 8 with M1 not seen No and 5 with M1 not seen Condone No and 8 and 5 with aritheg 72 so 8 less 30 so 5 more 105 and 103 No (arithmetic error in Do not condone No and 8 and 5 with eg 80 – 8 = 72 25 – 5 = 20 (proces	80 × 0.9 or 72 or 25 × 1.2 or 30 or 80 × 0.1 and 25 × 0.2 or 8 and 5 or —8 and 5 No and correct valid amount(s) Additional G If neither box is ticked, No may be implied eg neither box is ticked and Ellie paid 3 less Working and values may be seen by the table No and 105 with M1 not seen No and 8 with M1 not seen No and 5 with M1 not seen Condone No and 8 and 5 with arithmetic error eg 72 so 8 less 30 so 5 more 105 and 103 No (arithmetic error in calculating the control of the	oe eg 80 × (1 – 0.1) or 25 × 1.2 or 30 or 80 × 0.1 and 25 × 0.2 or 8 and 5 or -8 and 5 No and correct valid amount(s) Additional Guidance If neither box is ticked, No may be implied eg neither box is ticked and Ellie paid 3 less Working and values may be seen by the table No and 105 with M1 not seen No and 8 with M1 not seen Condone No and 8 and 5 with arithmetic error(s) seen eg 72 so 8 less 30 so 5 more 105 and 103 No (arithmetic error in calculating Ellie's total) Do not condone No and 8 and 5 with process error(s) seen eg 80 – 8 = 72 25 – 5 = 20 (process error, should be 25 + 5)

Q	Answer	Mark	Comments		
	Alternative method 1				
	16^2 or 256 and 30^2 or 900	M1	oe implied by 1156		
	$\sqrt{16^2 + 30^2}$ or $\sqrt{256 + 900}$ or $\sqrt{1156}$ or 34	M1dep	oe eg $\sqrt{16^2 + 30^2 - 2 \times 16 \times 30 \times \cos 90}$		
	52 × their 34 or 1768	M1dep	oe if M1M0 their 34 can be any value other than 16, 30 or 52 dep on 1st M		
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90		
	2008	A1	SC3 2248		
11	Alternative method 2				
	tan ⁻¹ $\frac{16}{30}$ or [28, 28.1] or tan ⁻¹ $\frac{30}{16}$ or [61.9, 62]	M1	oe may be on diagram		
	$\frac{30}{\cos(\text{their } [28, 28.1])}$ or $\frac{16}{\cos(\text{their } [61.9, 62])}$ or 34	M1dep	oe eg $\frac{16}{\sin(\text{their}[28, 28.1])}$ or $30\cos(\text{their}[28, 28.1]) + 16\cos(\text{their}[61.9, 62])$		
	52 × their 34 or 1768	M1dep	oe if M1M0 their 34 can be any value other than 16, 30 or 52 dep on 1st M		
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90		
	2008	A1	SC3 2248		

	Additional Guidance				
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
11	The 4th mark in Alts 1 and 2 is not dependent on any other marks				
cont	34 or 1768 or 240 may be on the diagram				
	SC3 is for using 30 × 16 for the area of the triangle				
	Ignore units				

Q	Answer	Mark	Comments
12	<i>y</i> is 125% of <i>x</i>	B1	

Q	Answer	Mark	Comments		
	$\frac{1}{3} \times \pi \times 24^2 \times 117$ or $\frac{2}{3} \times \pi \times 24^3$	M1	oe eg $\frac{1}{3}\pi \times 576 \times 117$ or $\frac{2}{3}\pi \times 13824$		
	22464π or [70536, 70582] or 9216π or [28938, 28957]	A1	may be seen in a sum implied by final A1		
	$\frac{1}{3} \times \pi \times 24^2 \times 117 + \frac{2}{3} \times \pi \times 24^3$ or $22464\pi + 9216\pi$ or	M1dep	oe		
	[70 536, 70 582] + [28 938, 28 957]				
	31 680π or [99 474, 99 539] A1				
13(a)	Additional Guidance				
	π may be seen as any value in the interval [3.14, 3.142]				
	Do not allow any misreads of formulae unless recovered $eg \ \pi \times 24^2 \times 117 \ and \ \frac{2}{3} \times \pi \times 24^2$				
	Allow dots for multiplication				
	For A marks allow eg 22 464 \times π or π \times 31 680				
	31 680π followed by incorrect evalua	tion atter	pt	M1A1M1A1	
	31 680π followed by further work				
	31 680 only				
	$\frac{1}{3} \times \pi \times 24^2 \times 117 = 4725$ $\frac{2}{3} \times \pi \times 24^3 = 28952$			M1A1	
	4725 + 28 952			M1	
	(even though 4725 is wrong the meth	nod for $\frac{1}{3}$	$\times \pi \times 24^2 \times 117$ is seen)		

Q	Answer	Mark	Comments	
	Alternative method 1 Uses volume scale factor			
	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24	
	(their 12) ³	M1dep	oe eg $24^3 \div 2^3$ or $13824 \div 8$	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	
	Alternative method 2 Compares volumes of cornets (ie compares total volumes)			
13(b)	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24 may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) $[40.8, 40.85]$ or (total volume) $\frac{55}{3}\pi$ or $[57.4, 57.7]$	
	their (a) ÷ $(\frac{1}{3}\pi \times 2^2 \times \frac{117}{\text{their } 12} + \frac{2}{3}\pi \times 2^3)$	M1dep	oe eg their (a) ÷ [57.4, 57.7]	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 1/1728	

Mark scheme and Additional Guidance continue on the next two pages

	Alternative method 3 Compares volumes of cones			
	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24 may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) $[40.8, 40.85]$ or (total volume) $\frac{55}{3}\pi$ or $[57.4, 57.7]$	
13(b)	their volume of cone from (a) $\div (\frac{1}{3}\pi \times 2^2 \times \frac{117}{\text{their } 12})$	M1dep	oe eg their volume of cone from (a) ÷ [40.8, 40.85]	
cont	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	
	Alternative method 4 Compares volumes of hemispheres			
	their volume of hemisphere from (a) $\div (\frac{2}{3}\pi \times 2^3)$	M2	oe eg their volume of hemisphere from (a) ÷ [16.7, 16.8]	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 1/1728	

	Additional Guidance	
	π may be seen as any value in the interval [3.14, 3.142]	
	Answer ×1728 or 1728×	M1M1A1
	Answer 12	M1M0A0
	Answer 12 ³ with 1728 seen	M1M1A1
	Answer 12 ³ without 1728 seen	M1M1A0
	Alts 2, 3 and 4	
	Allow if an incorrect volume formula from (a) is used in (b)	
	eg Alt 4 (a) $\frac{1}{2} \times \frac{2}{3} \times \pi \times 24^3 = 4608\pi$	
13(b) cont	(b) $\frac{1}{2} \times \frac{2}{3} \times \pi \times 2^3 = \frac{8}{3}\pi$	
	$4608\pi \div \frac{8}{3}\pi$	M2
	1728	A1
	Alts 2 and 3 Allow $\frac{55}{3}$ rounded to 1dp or better eg allow 18.3	
	Alt 4 Allow $\frac{16}{3}$ rounded to 1dp or better eg allow 5.3	
	Alts 2 and 3 2nd M1 – allow consistent omission of π	
	Alt 4 M2 – allow consistent omission of π	
	Alts 2, 3 and 4	
	Answer 1728 is M1M1A1 unless it comes from rounding or truncating	
	eg1 Alt 2 99 525.655 ÷ 57.595 = 1728	M1M1A1
	eg2 Alt 2 99 525.655 ÷ 57.595 = 1728.03 Answer 1728	M1M1A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	$375 + 400 + 1475$ or 2250 or 13 seen or $\frac{59}{90}$ seen or [0.65, 0.66] seen	M1	oe for 375 allow 350 or 370 or 3 for 1475 allow 1450 or 1470 or 1500 eg 400 + 400 + 1500 any estimated values must be eg only seeing 2300 is M0	or 1480	
	$\frac{1475}{375 + 400 + 1475} \times 29250$ or 1475×13 or $[0.65, 0.66] \times 29250$ or $[19012.5, 19305]$	M1dep	oe for 375 allow 350 or 370 or 3 for 1475 allow 1450 or 1470 or 1500 for 29 250 allow 29 000 or 29 or 29 300 or 29 500 or 30 000	or 1480 9200	
	19175	A1			
14(a)	Alternative method 2				
	[234, 238]	M1	may be on the diagram		
	$\frac{\text{their } [234, 238]}{360} \times 29250$ or their [234, 238] × 81.25	M1dep	oe for 29 250 allow 29 000 or 29 200 or 29 300 or 29 500 or 30 000		
	19175	A1			
	Additional Guidance				
	375 + 400 + 1475 = 2250 If they subsequently estimate 2250 no further marks can be scored			M1	
	Answer 19175 is M1M1A1 unless it comes from rounding or truncating eg1 Alt 1 $0.65555 \times 29250 = 19175$ eg2 Alt 1 $0.65555 \times 29250 = 19174.8$ Answer 19175			M1M1A1 M1M1A0	
	Alt 2 if their angle is outside the rang	je [234, 23	38]	M0M0A0	

Q	Answer	Mark	Comment
14(b)	It is lower than the answer to part (a)	B1	

Q		Answer		Mark	Comme	nt		
	8 1/16 2	1 1	1/2 16 1/8	oe values eg 0.0625 for $\frac{1}{16}$ condone unprocessed values eg for 8 allow $\frac{16}{2}$ or $\frac{8}{1}$ B2 B1 at least three of the eight rows, columns and diagonals have a product of 1 do not count rows, columns or diagonals that only have ones do not count incomplete rows, columns or diagonals				
Additional Guidance								
	If decimal values are used they must be exact The given values in the grid cannot be changed							
15	B1 can be a	warded with	an incomple	te grid eg	ı			
	8	$\frac{1}{4}$						
	1/16	1				B1		
	2 4 $\frac{1}{8}$		<u>1</u> 8					
		4						
	1	1 4	1	Thurs				
	1	1	$\frac{1}{2}$		roducts of 1 but two are need as they only have	В0		
	1	4	<u>1</u> 8					
	1	1	1/2	not cour	roducts of 1 but two are nted as they only have			

Q	Answer	Mark	Comments		
	Valid criticism of method eg the shop was open for fe indicating or implying that 30 is incorrect B1 a30 days			er than	
	Ad	dditional (Guidance		
	Valid criticism with non-contradictory	y statemen	ts	B1	
	Contradictory statements			В0	
	30 should be 26			B1	
	The answer is 115 (allow 116 or 115	5.4 or 115	.38)	B1	
	30 should be 25			B1	
	The answer is 120				
	30 should be 24 (condone)	B1			
	The answer is 125 (condone)		B1		
16(a)	The answer is more than 100				
	The shop wasn't open for 30 days				
	He didn't work every day in June				
	The shop was shut on Sundays		B1		
	He is open 6 days a week		B1		
	The shop isn't open every day		B1		
	He should divide by 31		В0		
	He doesn't work weekends		В0		
	There aren't 30 days in June		В0		
	Not every month has 30 days	-	B0		
	30 should be 27			В0	
	The answer is less than 100			В0	

Q	Answer	Mark	Comments
	Alternative method 1		
	3000 ÷ (9 + 4 + 7) or 3000 ÷ 20 or 150 9 × 2.39 or 21.51 or 4 × 1.89 or 7.56 or 29.07	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0) oe may be embedded or implied eg 9 × 2.39 × their 150 or 4 × 1.89 × their 150 their 150 can be any number 3226.5(0) or 1134 or 4360.5(0) score
16(b)	$(6660 - 9 \times 2.39 \times \text{their } 150 - 4 \times 1.89 \times \text{their } 150) \div (7 \times \text{their } 150)$ or $(6660 - 3226.5(0) - 1134) \div 1050$ or $(6660 - 4360.5(0)) \div 1050$ or $2299.5(0) \div 1050$	M1dep	M1M1 oe eg (6660 – 9 × 2.39 × their 150 – $4 \times 1.89 \times$ their 150) ÷ (3000 – 9 × their 150 – 4 × their 150) or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1
	2.19	A1	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2		
	3000 ÷ (9 + 4 + 7) or 3000 ÷ 20 or 150	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0)
16(b)	9 × 2.39 or 21.51 or 4 × 1.89 or 7.56 or 29.07	M1	oe may be embedded or implied eg 9 × 2.39 × their 150 or 4 × 1.89 × their 150 their 150 can be any number 3226.5(0) or 1134 or 4360.5(0) score M1M1
cont	$\left(\frac{6660}{\text{their }150} - 9 \times 2.39 - 4 \times 1.89\right) \div 7$ or $(44.4(0) - 21.51 - 7.56) \div 7$ or $15.33 \div 7$	M1dep	oe eg $(44.4(0) - 29.07) \div 7$ or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1
	2.19	A1	
	Ad	ditional (Guidance
	Up to M1M1 may be awarded for correven if this is seen amongst multiple		with no, or incorrect answer,

Q	Answer	Mark	Comment
17	cylinder	B1	

Q	Answer	Mark	Comments	
	$\frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ or $-\frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^2 + 11}$ 1.3(2) and -8.3(2)	M1 A1	oe eg $\frac{-7 \pm \sqrt{49 + 44}}{2}$ or $\frac{-7 \pm \sqrt{93}}{2}$ or $-\frac{7}{2} \pm \sqrt{\frac{49}{4} + 11}$ or $-\frac{7}{2} \pm \sqrt{\frac{93}{4}}$	
	· · · · · · · · · · · · · · · · · · ·	ditional C	Guidance	
	$-3.5 \pm \sqrt{12.25 + 11}$ or $-3.5 \pm \sqrt{23.2}$	M1		
	For M1 allow solutions given separate	$\frac{7 + \sqrt{93}}{2}$ and $\frac{-7 - \sqrt{93}}{2}$ M1		
18	Both solutions correct	M1A ⁻	1	
10	One solution correct does not imply N			
	Not using \pm is M0 unless recovered			
	eg1 $\frac{-7 + \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ followed	MOA	0	
	eg2 $\frac{-7 + \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ followed	by 1.3 a	nd -8.3 M1A	1
	A short dividing line or a short square eg by a correct solution	bol is M0 unless recovered		
	Condone if their square root symbol i	iny part of -11		
	$\sqrt{(7^2 - 4 \times 1 \times -11)}$ is correct for $\sqrt{7^2}$	11		
	Both decimal solutions seen in working	y one on answer line M1A	0	

Q	Answer	Mark	Comments		
	(32, 8)	В3	b – 4)		
	Ad	ditional G	Guidance		
	Mark the answer line for B3 and B2 (if blank check working lines and diagram)				
	B1 or SC1 is likely to be seen in working lines or on the diagram				
19	Condone missing brackets eg C 17, 18				
	Coordinates can be implied eg D $x = 23$ $y = 14$				
	Condone answers given as vectors for B2, B1 or SC1				
	eg $C \begin{pmatrix} 17 \\ 18 \end{pmatrix}$	B1			
	SC1 C cannot be (5, 26) or (11, 22) a evaluated				
	eg C (15, 17) and D (21, 13)			SC1	

Q	Answer	Mark	Comments
	Alternative method 1		
	5.88 ÷ 1.68 or 3.5 or 1.68 ÷ 5.88 or [0.285, 0.29] or 5.88 ÷ 5.60 or 1.05	M1	oe eg $\frac{7}{2}$ or $\frac{2}{7}$ or $\frac{21}{20}$ or $5.6 \times 1.05 = 5.88$
	$5.6(0) \div (5.88 \div 1.68)$ or $5.6(0) \times (1.68 \div 5.88)$ or $1.68 \div (5.88 \div 5.60)$ or 1.6	M1dep	oe eg 5.6(0) ÷ 3.5 or 5.6(0) × [0.285, 0.29] or 1.68 ÷ 1.05
20	their $1.6 \div 1.68$ or $[0.952, 0.9524]$ or $1 -$ their $1.6 \div 1.68$ or $1 - [0.952, 0.9524]$ or $[0.0476, 0.048]$	M1dep	oe eg $\frac{20}{21}$ or $1 - \frac{20}{21}$ or $\frac{1}{21}$ 5.6(0) ÷ 5.88 oe scores M3 1 - 5.6(0) ÷ 5.88 oe scores M3
	4.76	A1	
	Alternative method 2	1	
	5.88 ÷ 5.6(0) or 1.05	M1	oe eg $\frac{21}{20}$
	1 ÷ their 1.05	M1dep	oe eg 1 ÷ $\frac{21}{20}$
	[0.952, 0.9524] or 1 – [0.952, 0.9524] or [0.0476, 0.048]	M1dep	oe eg $\frac{20}{21}$ or $1 - \frac{20}{21}$ or $\frac{1}{21}$ 5.6(0) ÷ 5.88 oe scores M3 1 - 5.6(0) ÷ 5.88 oe scores M3
	4.76	A1	

	Additional Guidance	
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
	$\frac{0.28}{5.60} = 0.05 \text{ is M0 unless 1.05 subsequently used}$	
	5.60 ÷ 1.68 with no further correct working	MO
	Note that 1.6 seen may be from an incorrect method eg $1.68 \times 0.95 = 1.6$ does not score because 1.68×0.95 is an incorrect method and the actual value of 1.68×0.95 is 1.596	
	Any single calculation or set of calculations that lead to $\frac{20}{21}$ or $\frac{1}{21}$	M3
20 cont	Some common oes for $1 - 5.6(0) \div 5.88$ are $\frac{5.88 - 5.6(0)}{5.88} \text{or} \frac{0.28}{5.88} \text{and} \frac{1.68 - 1.6}{1.68} \text{or} \frac{0.08}{1.68}$	М3
	3rd M1 oes include [0.952, 0.9524] × 100 or [95.2, 95.24]% 100% – [0.952, 0.9524] × 100 [0.0476, 0.048] × 100 or (4.76, 4.8]%	
	Values that score marks may be seen in ratios eg 5.88 : 1.68 (does not score at this stage) 3.50 : 1	M1
	Allow working in pence eg 588 ÷ 1.68 or 350	M1
	Allow working in grams eg 5.88 ÷ 1680 or 0.0035	M1

Q	Answer	Mark	Comment
21	$x^2 + y^2 = 6$	B1	

Q	Answer	Mark	Comment
22	8 ⁻⁵	B1	

Q	Answer	Mark	Comments	
	(3x+2)(x-6)	B2	B1 $(3x + a)(x + b)$ where $ab = -12$ or $a + 3b = a$ a and b must be integers SC1 $(-3x - 2)(6 - x)$	= –16
	Ad	ditional C	Guidance	
	Brackets in either order for B2 and B	1 and SC	1	
	(3x+6)(x-2)			B1
	(3x+4)(x-3) or $(3x+3)(x-4)$ or	B1		
	(3x + 12)(x - 1) or $(x - 12)(3x + 1)$	B1		
	Some B1 responses may be implied			
23	eg $3(x + 4)(x - 1)$ implies $(3x + 12)(x + 12)$	B1		
	Do not allow answers involving fraction	В0		
	Some examples of B1 with $a + 3b = (3x + 5)(x - 7)$ $(3x + 8)(x - 8)$ (3)			
	(2+3x) is equivalent to $(3x+2)$ etc			
	Condone use of multiplication signs i eg $(3x + 2) \times (x - 6)$	1 responses	B2	
	Condone missing closing bracket in E eg $(3x + 6)(x - 2)$	esponses	B1	
	Ignore any attempt to 'solve' after B2	or B1 see	en	

Q	Answer	Mark	Comments
24	$\frac{15-8}{6-2}$ or $\frac{7}{4}$	M1	oe eg $\frac{8-15}{2-6}$ or 1.75 may be embedded in an attempt at equation of line eg $y = \frac{7}{4}x$ may be implied
	$-1 \div \text{their } \frac{7}{4} \text{ or } -\frac{4}{7}$ or $\frac{17-9}{x-0} \times \text{their } \frac{7}{4} = -1$	M1	oe allow [-0.57143 , -0.57] may be embedded in an attempt at equation of a line eg $y = \text{their } -\frac{4}{7}x \dots$
	$17 - 9 = \text{their} - \frac{4}{7}x$ or $-4x = 56$ or $56 \div -4$	M1dep	oe equation must be of the form $ax = b$ (b can be unprocessed) dep on 2nd M1
	-14	A1	

	Additional Guidance			
	The second mark is not dependent on the first – see examples below			
	(gradient of line through given points =) $\frac{6-2}{15-8} = \frac{4}{7}$			
	(gradient of perpendicular line =) $-\frac{7}{4}$	M1		
	$17 - 9 = -\frac{7}{4}x$	M1		
	(gradient of line through given points =) $-\frac{7}{4}$	MO		
24 cont	$\frac{17-9}{x} \times -\frac{7}{4} = -1$	M1		
	-56 = -4x	M1		
	(gradient of line through given points =) $\frac{7}{4}$	M1		
	(gradient of perpendicular line =) $\frac{4}{7}$	МОМО		
	Condone use of letters for gradients eg $x = 1.75$	M1		
	For the first two marks, condone inclusion of x in their gradients			
	Answer –14 that comes from rounding or truncating cannot score A1			
	eg1 (perp grad =) -0.57 8 = $-0.57x$ Answer -14	M3A1		
	eg2 (perp grad =) -0.57 8 = $-0.57x$ = -14.03 Answer -14	M3A0		

Q	Answer	Mark	Comments	
25	x = 2y + 5 or $x - 5 = 2yor y - 5 = 2x or \frac{y - 5}{2}$	M1	oe eg $x = 2f^{-1} + 5$ or $f(x) - 5 = 2x$	
	$\frac{x-5}{2}$	A1	oe eg $\frac{x}{2} - \frac{5}{2}$ may be implied eg by $12f^{-1}(x)$ implied by $\frac{y-5}{2}$ if $\frac{x-5}{2}$ us subsequent working	
	Correctly expands $3(2x + 5) - 12 \times \text{their } \frac{x - 5}{2}$ to a linear expression	M1	6x + 15 - 6x + 30 if M1A1 their $\frac{x-5}{2}$ must be a function of x their $\frac{x-5}{2}$ cannot be $2x + 5$ implied by a correct linear expression or value for $3(2x + 5) - 12 \times \text{their } \frac{x-5}{2}$	
	$\frac{x-5}{2}$ and 45	A1		
	Additional Guidance			
	45 with no working			Zero
	45 from wrong working does not score 4 marks – mark the working seen			
	First A1 Condone $y = \frac{x-5}{2}$ or $f = \frac{x-5}{2}$ or $f(x) = \frac{x-5}{2}$ or $x = \frac{x-5}{2}$			
	For $6x + 15 - 6x + 30$ allow $\frac{12x + 30 - 12x + 60}{2}$ but not $6x + 15 - \frac{12x - 60}{2}$			
	$x = 2y + 5 \qquad \frac{x+5}{2}$			M1A0
	$6x + 15 - \frac{12x}{2} - \frac{60}{2}$ (implied by -15)			M1A0
	-2x - 5			M0A0
	6x + 15 + 24x + 60 (implied by $30x - 6x + 15 + 24x + 60$)	+ 75)		M1A0

Q	Answer	Mark	Comments		
	18.9 ÷ 0.45 or 42	M1	oe		
	their 42 ÷ 7 × 8 or 48	M1dep	oe eg $\frac{8}{7}$ × their 42		
			or [1.14, 1.143] × their 42		
	0.45 ÷ 9 × 5 or 0.25	N/A	oe eg $\frac{5}{9}$ × 0.45 or [0.55, 0	.56] × 0.45	
		M1	$\frac{8}{7} \times \frac{5}{9} \times 18.9$ oe scores M3		
	12	A1			
26	Additional Guidance				
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	Any single calculation or set of calculations that are a correct method and lead to 12			M3	
	Note that the single calculation $\frac{8}{7} \times \frac{5}{9} \times 18.9$ does not use 0.45			M3	
	An oe for $\frac{8}{7} \times \frac{5}{9} \times 18.9$ is $\frac{8}{7} \times \frac{18.9}{0.45} \times \frac{5}{9} \times 0.45$			M3	
	Values may be seen in ratios eg 42 : 48			M1M1	

Q	Answer	Mark	Comme	nt	
	Alternative method 1				
	Sight of at least one of 2.35 or 2.45 or 2.85 or 2.95	M1	allow 2.449 for 2.45 and	d 2.949 for 2.95	
	their 2.35 × their 2.85	M1	2.3 ≤ their 2.35 < 2.4 2.8 ≤ their 2.85 < 2.9		
	2.35 × 2.85 selected and 6.6(975)	A1	accept 6.7(0) or 6.698 with 2.35 × 2.85 selected		
	Alternative method 2				
	Sight of at least one of 2.35 or 2.45 or 2.85 or 2.95 M1			and 2.949 for 2.95	
	6.51 ÷ their 2.35 or 6.51 ÷ their 2.85	$2.3 \leqslant \text{their } 2.35 < 2.4$ M1 $2.8 \leqslant \text{their } 2.85 < 2.9$			
27	6.51 ÷ 2.35 and 2.7(7) and 2.85 or 6.51 ÷ 2.85 and 2.2(8) and 2.35	A1			
	Additional Guidance				
	Alt 1 2.35×2.85 amongst other calculations eg 2.45×2.95 and/or 2.35×2.95 can still score the second M1 but it must be clear that they are considering $2.35 \times 2.85 = 6.6(975)$ to show that the bedroom can be rented				
	eg1 2.35 × 2.85 = 6.6975 2.45 × 2.95 = 7.2275			M1M1A0	
	eg2 $2.35 \times 2.85 = 6.6975$ $2.45 \times 2.95 = 7.2275$ $2.35 \times 2.95 = 6.9325$ The lower bounds show it can be rented			M1M1A1	
	Ignore the calculation 2.4 × 2.9 throughout				
	Alt 1 6.6(975) or 6.7 or 6.698 without 2.35 × 2.85 selected			A0	
	6.6975 only			M0M0A0	
	Alt 2 2.7(7) without 6.51 ÷ 2.35 and 2.85 seen		A0		
	Alt 2 2.2(8) without 6.51 ÷ 2.85 and 2.35 seen			A0	

Q	Answer	Mark	Comments
28	interior angle = 150 or exterior angle = 30 or angle <i>BCN</i> = 120	B1	method not required may be seen on diagram
	interior angle = 150 with a valid method shown or exterior angle = 30 with a valid method shown or angle BCN = 120 with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines eg $180 - \frac{360}{12} = 150$ or $\frac{1800}{12} = 150$ or $360 - 120 - 90 = 150$ or $\frac{360}{12} = 30$ or $\frac{180 - 120}{2} = 30$ or $180 - 150 = 30$ or $360 - 150 - 90 = 120$ or $360 - 240 = 120$ or $180 - 2 \times 30 = 120$
	interior angle = 150 with a valid method shown and exterior angle = 30 with a valid method shown and angle BCN = 120 with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines $eg \ \frac{1800}{12} = 150$ and $\frac{180 - 120}{2} = 30$ and $360 - 240 = 120$ angles worked out in any order
	Fully correct working that must show correct progression and show all valid methods Valid methods shown must be appropriate for the approach used A reason must be included in the final step	B1dep	examples of the final step are (i) angle <i>ABC</i> + angle <i>CBN</i> = 180 (ii) interior angle = 150 in two different ways (iii) exterior angle = 30 in two different ways (iv) angle <i>BCN</i> = 120 in two different ways (v) sum of three angles at <i>C</i> = 360 (vi) sum of angles of triangle <i>BCN</i> = 180

	Additional Guidance				
	Condone incorrect use of equals signs throughout eg interior angle = $12 - 2 = 10 \times 180 = 1800 \div 12 = 150$	B1B1			
	interior angle may be seen as angle ABC or angle BCD exterior angle may be seen as angle CBN				
	It must be clear which angle they are working out eg1 Do not accept 150 if it is not correctly identified or not in the correct position on diagram eg2 Do accept 150 if it is identified as an interior angle or angle ABC or is in the correct position on the diagram				
	Do not accept incorrect statements eg1 exterior angle = 150 (even if 150 in correct position on the diagram) eg2 angle ACB = 150 (even if 150 in correct position on the diagram)				
	Ignore reasons for the first three marks				
28 cont	Angles on the diagram with no valid methods can score a maximum of B1B0B0B0				
	For the 2nd and 3rd marks the methods shown do not have to show progression				
	Example of fully correct working for (i)				
	interior angle = $\frac{1800}{12} = 150$	B1B1			
	angle <i>BCN</i> = 360 - 150 - 90 = 120				
	angle $CBN = \frac{180 - 120}{2} = 30$	B1			
	150 + 30 = 180 angles on a (straight) line	B1			
	Example of fully correct working for (ii)				
	exterior angle = $\frac{360}{12}$ = 30	B1B1			
	angle <i>BCN</i> = 180 − 2 × 30 = 120				
	interior angle = 360 - 120 - 90 = 150	B1			
	interior angle = $\frac{1800}{12}$ = 150 (interior) angle of polygon	B1			

Q	Answer	Mark	Comments		
	$(x-9)^2$	M1	allow $\left(x - \frac{18}{2}\right)^2 \dots$ may be implied by a grid for	$(x-9)^2$	
	$(x-9)^2 - 9^2 + 70$ or $(x-9)^2 - 81 + 70$ or $(x-9)^2 - 11$	M1dep	oe completing the square $eg \left(x - \frac{18}{2}\right)^2 - \left(\frac{18}{2}\right)^2 + 70$	` ,	
	(9, -11) with correct completing the square seen	A1	eg (9, -11) with $(x-9)^2 - 9^2$ SC1 (9, -11) with correct consquare not seen		
	Ad	ditional G	uidance		
	Allow $(x-9)^2$ to be $(9-x)^2$ throughout				
	Allow $(x-9)^2$ to be $(x-9)(x-9)$ throughout				
	Condone expression = 0 throughout				
29	$(x-9)^2 = 11$ with $(x-9)^2 - 11$ (= 0) also seen scores M1M1 Also scores A1 if answer correct				
	$(x-9)^2 = 11$ without $(x-9)^2 - 11$ (= 0) also seen Answer correct would still mean M1M0 (or SC1)				
	Allow as a slip if completing the square seen but the squared is omitted in a subsequent line				
	eg $(x-9)^2 - 81 + 70 = (x-9) - 11$ Answer $(9, -11)$				
	(x-9)-11 and answer $(9,-11)$				
	(x-9)-11 and answer not $(9, -11)$				
	(9, -11) with no method or from a different method eg calculus				
	$\begin{array}{c cc} x & -9 \\ \hline x & x^2 & -9x \end{array}$ Condone or	e of the p	roducts missing or incorrect	M1	
	_9				