

Η

GCSE (9-1)

Mathematics

J560/06: Paper 6 (Higher tier)

General Certificate of Secondary Education

Mark Scheme for November 2019

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
×	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
MO	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.

The **M**, **A**, **B** etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded.

It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

J560/06

Subject-Specific Marking Instructions

- M marks are for <u>using a correct method</u> and are not lost for purely numerical errors.
 A marks are for an <u>accurate</u> answer and depend on preceding M (method) marks. Therefore MO A1 cannot be awarded.
 B marks are <u>independent</u> of M (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
 SC marks are for <u>special cases</u> that are worthy of some credit.
- 2. Unless the answer and marks columns of the mark scheme specify **M** and **A** marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.

3. Where follow through (**FT**) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word *their* for clarity, eg FT 180 × (*their* '37' + 16), or FT 300 – $\sqrt{(their '5^2 + 7^2)}$. Answers to part questions which are being followed through are indicated by eg FT 3 × *their* (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

- 4. Where dependent (**dep**) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
- 5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.
 - cao means correct answer only.
 - **figs 237**, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
 - isw means ignore subsequent working (after correct answer obtained).
 - nfww means not from wrong working.
 - oe means or equivalent.
 - rot means rounded or truncated.
 - seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line,
 - even if it is not in the method leading to the final answer.
 - soi means seen or implied.

J560/06

Mark Scheme

- 6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
- 7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
- 8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for **A** and **B** marks. Deduct 1 mark from any **A** or **B** marks earned and record this by using the MR annotation. **M** marks are not deducted for misreads. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to 15.8, 15 or 16 on the answer line. Allow full marks for the 15.75.
- 9. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.

If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation × next to the wrong answer.

- 10. Ranges of answers given in the mark scheme are always inclusive.
- 11. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
- 12. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question	Question Answer		Answer Marks Part marks and guidance		Part marks and guidance		
1	$x \ge 5$ AND (-1) + (-	4	B2 for $x \ge 5$ as final answer or M1 for $3x \ge 10 + 5$ or better AND B2FT for $x \ge 5$, or <i>their</i> inequality, correctly shown or B1FT for $x \ge 5$, or <i>their</i> inequality, shown with a correct circle and wrong arrow or wrong circle and correct arrow	Solution to inequality Allow M1 for this expression with other inequality symbols or equals sign or [$x =$] 5 as solution (can be implied by mark/circle on the diagram) or trials leading to selection of 5 or final correct trial using 5 Displaying the solution Display must show an inequality that fits on the number line for FT Mark to candidate's advantage either $x \ge 5$ or <i>their</i> inequality Accept an arrow of any length or a line reaching 7 If no solution to inequality seen: Filled circle at 5 arrow to right M1B2 Empty circle at 5 arrow to left M1B1 Filled circle at 5 arrow to left M1B1 Empty circle at 5 arrow to left M1B0 Mark at 5 no line or arrow M1B0 Circle and/or arrow at other than 5 M0B0			

J560	J560/06 Ma				rk Scheme	November 2019
Qu	esti	on	Answer	Marks	Part marks and guidance	
2			31 218	5	M4 for $54868 - \frac{54868}{2.32}$ oe or	May be seen as $54868 \times \frac{132}{232}$ or 236.5 × 132
					M3 for $\frac{54868}{2.32}$ soi by 23650 or 236.5 or M2 for 2.32 or 232[%] soi or M1 for 1.32 or 132[%] soi If M1 only scored then also allow an SC1 for $\frac{54868}{1.32}$ soi by 41566 to 41567	Examples of implied: 2.32 implied by [A =] 0.32B + 2B oe but not by 32[%] × B + 2B oe 1.32 implied by 0.32 + 1 but not by 32[%] + 1 nor 0.32 + 100[%]
3			$\frac{1}{27}$	3	M2 for $\frac{2}{6} \times \frac{2}{6} \times \frac{2}{6}$ soi by $\frac{8}{216}$ oe or 0.037[] or 3.7[]% or B1 for $\frac{2}{6}$ oe If 0 scored then SC1 for $(their(\frac{2}{6}))^3$ oe	$0 < their\left(\frac{2}{6}\right) < 1$

J560	J560/06			Mark Scheme		
Qu	esti	on	Answer	Marks	Part marks and guidance	
4			80 nfww	5	B3 for height [of B =] 10 OR	May be seen on diagram
					M2 for $3x^2 = their (12 \times 25)$ or better	May be implied by arithmetic processing e.g. $\sqrt{\frac{their (12 \times 25)}{3}}$
					or	or at least two trials of $3 \times$ number \times number intending 300
					M1 for $3x \times x$ oe or 300 seen A1 for $x = 10$	
					AND	
					M1 for $(2 \times their 10) + (2 \times 3 \times their 10)$ oe or for $2a + 2b$ where $ab = 300$ but not with 25 and 12	Allow <i>their</i> 10 if clearly intended as height e.g. " <i>h</i> =" or marked on diagram e.g. M1M1 for 2 × 36 + 2 × 8.3[3] after 300 seen

J560/06		Ma	rk Scheme	November 2019
Question	Answer	Marks	Part marks and guidance	
5	3.2 nfww	6	M3 for 1500 × 1.03 ⁵ or M2 for 1500 × 1.03 ^k where <i>k</i> is 2, 3 or 4 or M1 for 1.03 soi perhaps by 1545	Condone 3.2% as final answer soi by 1738 to 1739 soi by [2 yr =] 1591[.35], [3 yr =] 1639[.09] or [4 yr =] 1688.[26]
			AND M2 for $\frac{their \ 1738.91 - 1500}{5 \times 1500}$ [x 100] oe or M1 for (<i>their</i> 1738.91 - 1500) ÷ 5 or for (<i>their</i> 1738.91 - 1500) ÷ 1500	 their 1738.91 must come from a valid attempt to find compound interest for at least 2 years M2 soi by 0.0317 to 0.032 or soi by 3.17 to 3.19 M1 soi by 47.6[0] to 47.8[0] or soi by [0].1586 to 0.1594
			Alternative (not using a base amount) M5 for $[r=](1.03^5-1) \div 5$ or M4 for 1.03^5-1 or M3 for 1.03^5 or M2 for 1.03^k (where k is 2, 3 or 4) or M1 for 1.03	

J560/06			rk Scheme	November 2019
Questic	n Answer	Marks	Part marks and guidance	
6	43.75 or 43.8	4	M3 for $\frac{7}{16}$ [x 100] OR M1 for 16 correct combinations shown or for 4 x 4 [combinations] M1 for AA, AC, AG, AS, BA, EA, PA only or 7 [combinations involving Alice] identified Alternative method M3 for $\frac{7}{16}$ [x 100] or M2 for 1 - $\frac{3}{4}$ x $\frac{3}{4}$ or $\frac{1}{4}$ + $\frac{3}{4}$ x $\frac{1}{4}$ or $\frac{1}{4}$ x $\frac{1}{4}$ + $\frac{1}{4}$ x $\frac{3}{4}$ + $\frac{3}{4}$ x $\frac{1}{4}$ or M1 for $\frac{3}{4}$ x $\frac{3}{4}$ or $\frac{3}{4}$ x $\frac{1}{4}$ or $\frac{1}{4}$ x $\frac{1}{4}$	Accept 44 after correct method seen Implied by 16 or a denominator of 16 Allow [0].75 and [0].25 throughout soi by 9/16, 3/16 or 1/16

J560)/06			Ma	rk Scheme	November 2019
Qu	esti	on	Answer	Marks	Part marks and guidance	
7	а		Completes table with 6 -2 -3 1	2	B1 for at least 2 correct values	
	b		Correct curve	3	 B2 for 6 or 7 points correctly plotted FT <i>their</i> table or B1 for 4 or 5 points correctly plotted FT <i>their</i> table 	Tolerance ±2 mm for plotting and curve through the correct points. Strict marking of 'smooth curve' – must not be ruled or 'feathered'
	C		Straight line passing through (0, -6) and (3, 0)	3	M2 for a correct unruled line or a straight line of gradient 2 or a straight line passing through (0,-6) or two correct points correctly stated or plotted or M1 for one correct point stated or plotted	x -1 0 1 2 3 4 5 y -8 -6 -4 -2 0 2 4
	d		1.6 and 4.4	2FT	B1 for each or both answers as decimals to a greater accuracy Correct answer or FT <i>their</i> straight line	Tolerance ±1 mm. Do not allow exact answers $3 + \sqrt{2}$ and $3 - \sqrt{2}$

J560	0/06			Ma	rk Scheme	November 2019
Qu	esti	on	Answer	Marks	Part marks and guidance	
8			7.2 oe nfww	4		Condone use of <i>h</i> or other letter as height of pyramid
					M2 for $\frac{1}{3} \times 5 \times 5 \times \frac{h}{2} = 30$ oe	M2 implied by $\frac{30}{\frac{1}{3} \times 5 \times 5}$ or $\frac{60}{\frac{1}{3} \times 5 \times 5}$,
					or $\frac{1}{3} \times 5 \times 5 \times h = 60$ oe or $\frac{1}{3} \times 5 \times 5 \times h = 30$ oe	perhaps in stages
					or M1 for $\frac{1}{3} \times 5 \times 5 [\times \frac{h}{2} \text{ or } \times h]$	soi 8.3[3] or $\frac{25}{3}$
					AND	
					A1dep for $[h \text{ or } \frac{h}{2} =] 3.6 \text{ or } 7.2$	A1 dep on <i>their</i> M2
						Note: using V = 60 should lead to final answer 7.2, and score 4 marks . If spoilt (e.g final answer 14.4, then $M2A1$)
9	а		2.5 5	3	B2 for $[k =] 2.5$ or B1 for $\binom{4}{2}$ B1 for $[n =] 5$	
9	b			1	Correct arrow and label $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$ or a + 2 b	Accept single arrowhead
			$\begin{pmatrix} 5\\5 \end{pmatrix}$	1	Correct arrows on a and 2 b Correct labels on a and 2 b	
			2b a	I		

J560/06		Mark Scheme November			
Question		Marks Part marks and guidance			
10 a	4 + 11 + 8 = 23 seen	1		Accept written as a sum in a column	
b	e.g. First column: n + (n + 7) + (n + 6) = 3n + 13 Second column: (n + 1) + (n + 8) + (n + 5) = 3n + 14 (2n + 14) (2n + 12) 1	5	 B2 for consistent algebraic terms for at least first two columns of the grid or B1 for at least 3 algebraic terms for consecutive numbers seen AND 	e.g. <i>n</i> , (<i>n</i> + 7), (<i>n</i> + 6) and (<i>n</i> + 1), (<i>n</i> + 8), (<i>n</i> + 5) e.g. <i>n</i> , (<i>n</i> + 1), (<i>n</i> + 2)	
	(3n + 14) - (3n + 13) = 1		 M1 for algebraic sum of first or second column shown M1 for algebraic sum of first and second columns shown and correctly simplified A1 for sum of second column – sum of first column = 1 calculated or explained from correct working or M1 for difference of one pair of algebraic terms from first and second column shown M1 for differences of two further pairs of algebraic terms from first and second column, with all three pairs correctly simplified A1 for each difference found as +1 or -1 oe and summed/explained to a difference of +1. Correct algebra and reasoning throughout If 0 scored, allow SC1 for a correct numerical or descriptive example using either method and stating an overall difference of 1 	e.g. $n + (n + 7) + (n + 6)$ or in column e.g. $n + (n + 7) + (n + 6) = 3n + 13$ A1 for e.g. $3n + 14$ and $3n + 13$ and "second column is 1 more than the first" but A0 for e.g. $3n + 14$ and $3n + 13$ and "difference of 1" or for $(3n + 14) - 3n + 13 = 1$ e.g. "the difference between $n + 1$ and n is 1" e.g. " $n + 1$ is 1 more than n " Condone poor use of brackets for both M marks	

J560	J560/06			Ma	rk Scheme	November 2019	
Qu	esti	on	Answer	Marks	Marks Part marks and guidance		
11	а	i	60	3	B2 for [<i>u</i> ₄ =] 15 or M1 for 5 × 6 – 15		
		ii	4.2 oe	3	M2 for (6 + 15) ÷ 5 or M1 for 6 = 5 u_2 - 15 or $u_2 = \frac{u_3 + 15}{5}$	Allow 6 = $5k - 15$ or $u_n = \frac{u_{n+1} + 15}{5}$	
	b		$[u_2 =]5 \times 3.75 - 15 = 3.75$ Since $u_1 = u_2$, all terms are equal	1 1dep		Must see calculation and answer Accept "every term is 3.75"	

J560			rk Scheme	November 2019		
		on	Answer		Part marks and guidance	
12	а		37 minutes 52 seconds to 37 minutes 53 seconds	4	B1 for 5000 or 0.0022 seen and M1 for figs 5 ÷ figs 22 oe soi by figs 2272 to 2273 and M1 for figs (2272 to 2273) ÷ 60 soi by figs 37[]	
	b		19.09 20.19	6	B5 for 19.09 to 19.1 and 20.18 to 20.2 as final answers OR B2 for 53.5, 52.5, 2.65 and 2.75 all seen or B1 for two of 53.5, 52.5, 2.65 or 2.75 seen and	Allow 2.749[9] for 2.75 or 53.49[9] for 53.5
					M2 for both 53.5 ÷ 2.65 and 52.5 ÷ 2.75 or M1 for (52.5 to 53.5) ÷ (2.65 to 2.75) and A1dep for 19.09 to 19.1 and 20.18 to 20.2 If 0 scored, allow SC3 for one answer either 19.09 to 19.1 or 20.18 to 20.2	For M2 ignore other unnecessary divisions e.g. 53.5 ÷ 2.75 and 52.5 ÷ 2.65 Dep on M2

J560/06		Ma	rk Scheme	November 2019
Question	Answer	Answer Marks		
13	29 66 0e	5	M4 for $\frac{2}{3} \times \frac{29}{44}$ OR B1 for [p(black) =] $\frac{2}{3}$ oe soi and B2 for $\frac{29}{44}$ or B1 for $\frac{n}{44}$ with 0< n < 44 or B1 for $\frac{29}{45}$ and M1 for $\frac{2}{3} \times their \frac{n}{44}$ or $\frac{2}{3} \times \frac{29}{45}$	oe e.g. $\frac{870}{1980}$ or 0.439 or 0.44 after correct working
14	$2^{\frac{15}{4}}$ or $2^{3.75}$	3	B2 for 2^{15} or $2^{3/4}$ or $(2^3)^{5/4}$ or $3 \times \frac{1}{4} \times 5$ seen or B1 for [8 =] 2^3 or $8^{\frac{5}{4}}$ or $8^{1.25}$ seen	Accept equivalences of 15/4

J560/06			Mark Scheme		November 2019	
Qu	Question		Answer	Marks	Part marks and guidance	
15			e.g. 300-450: 150 × 70 = 10 500 [parcels] 450-700: 250 × 50 = 12 500 [parcels] [Zoe is] not correct oe	4	M2 for 150×70 and 250×50 or M1 for 150×70 or 250×50 AND A1 for 10500 or 12500 AND A1 10500 and 12500 and conclusion Alternative method, for example: M1 for 150×70 soi by 10500 A1 for 10500 AND M1 for their $10500 \div 250$ A1 for height of $450-700$ bar is more than 42 so Zoe is not correct If 0 scored then SC2 for 10500 and 12500 with no method shown or SC3 for 10500 and 12500 with no method shown and correct conclusion	For full marks, calculations must be shown, together with a conclusion. Allow other equivalent methods involving consistent area calculations.
	b		Bar of height 130 drawn for 50-100g	2	M1 for 6500 ÷ 50 soi by 130	
	С		The weights of parcels may not be evenly distributed [between 200g and 300g] oe	1		e.g. uneven distribution of weights

J560			Ma	rk Scheme	November 2019	
Qu				Marks	Part marks and guidance	
16	а		50 nfww	4	M3 for ABC = 25 or B = 25 or for AOB = 150 and COB = 160 or M2 for ABO = 15 and CBO = 10 or for AOB = 150 or for COB = 160 or M1 for ABO = 15 or CBO = 10	Throughout, angles could be on diagram
					If 0 scored, SC1 for AOC = $2 \times [their]$ ABC stated or applied or for 360 – <i>their</i> AOB – <i>their</i> COB applied	SC0 for angle at centre = 2 × angle at circumference
					Alternative method to find AOC = x M3 for $\frac{x}{2} + 2\left(\frac{180-x}{2}\right) + 15 + 10 = 180$ oe OR M1 for OAC = OCA = $\frac{180-x}{2}$ and M1 for ABC = $\frac{x}{2}$	
					Alternative method to find AOC = x M3 for $360 - x + 10 + 15 + \frac{x}{2} = 360$ OR M1 for [reflex] AOC = $360 - x$ and M1 for ABC = $\frac{x}{2}$	

DEF = 180 - (43 + 55) = 82 angles in a triangle HDF = DEF = 82 alternate segment theorem OR DEF = 82 and angles in a triangle M1 for [DEF =] 180 - (43 + 55) soi by DEF = 82 notation not used provided that and gas are unambiguously di (eg. labeled on the diagram referred to in working using the bels) OR GDE = 55 alternate segment theorem HDF = 180 - (43 + 55) = 82 angles on a straight line M2 for HDF = DEF [= 82] and alternate segment theorem or M1 for HDF = DEF [= 82] Note: 180 - (43 + 55) with no other creditable working or reason scores M1 M1 for GDE = 55 AND Alternative method M2 for GDE = 55 and alternate segment theorem or M1 for GDE = 55 AND Note: 180 - (43 + 55) with no other creditable working or reason scores M1 M2 for (HDF =] 180 - (43 + 55) [= 82] and angles on a straight line M2 for (HDF =] 180 - (43 + 55) [= 82] and angles on a straight line or M1 for [HDF =] 180 - (43 + 55) [= 82] M2 for (HDF =] 180 - (43 + 55) [= 82] B1 for a ray drawn through either point A and (6, 7) or point B and (2, 9) b -2 2 B1 for 2	J560/06			rk Scheme	November 2019
DEF = 180 - (43 + 55) = 82 angles in a triangle HDF = DEF = 82 alternate segment theorem OR DEF = 82 and angles in a triangle or AND notation not used provided that angles are unambiguously di (eg. labeled on the diagram referred to in working using the bels) OR GDE = 55 alternate segment theorem HDF = 180 - (43 + 55) = 82 angles on a straight line M2 for HDF = DEF [= 82] and alternate segment theorem or M1 for HDF = DEF [= 82] Note: 180 - (43 + 55) with no other creditable working or reason scores M1 Image: Alternate segment theorem HDF = 180 - (43 + 55) = 82 angles on a straight line Alternative method M2 for GDE = 55 and alternate segment theorem or M1 for GDE = 55 Note: 180 - (43 + 55) with no other creditable working or reason scores M1 Image:	Question	Answer	Marks	Part marks and guidance	
alternate segment theorem segment theorem 180 - (43 + 55) with no other or M1 for HDF = DEF [= 82] Alternative method M2 for GDE = 55 and alternate segment theorem or M1 for GDE = 55 AND M2 for GDE = 55 AND M2 for GDE = 180 - (43 + 55) [= 82] and angles on a straight line M1 for GDE = 55 AND M2 for [HDF =] 180 - (43 + 55) [= 82] and angles on a straight line or M1 for [HDF =] 180 - (43 + 55) [= 82] M1 for [HDF =] 180 - (43 + 55) [= 82] M2 for [HDF =] 180 - (43 + 55) [= 82] M1 for [HDF =] 180 - (43 + 55) [= 82] M2 for [HDF =] 180 - (43 + 55) [= 82] M3 angles on a straight line or M1 for [HDF =] 180 - (43 + 55) [= 82] M2 for [HDF =] 180 - (43 + 55) [= 82] M2 for [HDF =] 180 - (43 + 55) [= 82] M3 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M2 for [HDF =] 180 - (43 + 55) [= 82] M3 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HDF =] 180 - (43 + 55) [= 82] M4 for [HD	b	DEF = 180 - (43 + 55) = 82 angles in a triangle HDF = DEF = 82 alternate segment theorem	4	DEF = 82 and angles in a triangle or M1 for [DEF =] $180 - (43 + 55)$ soi by DEF = 82	Allow full marks if 3 letter angle notation not used provided their angles are unambiguously defined (eg. labelled on the diagram and referred to in working using their labels)
17 a (10, 11) 2 B1 for a ray drawn through either point A and (6, 7) or point B and (2, 9) b -2 2 B1 for 2		alternate segment theorem HDF = $180 - (43+55) = 82$		segment theorem or M1 for HDF = DEF [= 82] <u>Alternative method</u> M2 for GDE = 55 and alternate segment theorem or M1 for GDE = 55 AND M2 for [HDF =] $180 - (43 + 55)$ [= 82] and angles on a straight line	180 – (43 + 55) with no other creditable working or reasoning
b -2 2 B1 for 2					
	17 a	(10, 11)	2		
2 P1 for $(k, 1)$	b	-2	2	B1 for 2	
	С	(4, 1)	2	B1 for (4, <i>k</i>) or (<i>k</i> , 1)	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019

